Vol. 95
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-16
Amplitude Steerable Antenna Based on Reconfigurable Ratio Power Divider
By
Progress In Electromagnetics Research M, Vol. 95, 115-123, 2020
Abstract
This paper presents a highly innovative approach of amplitude steering without the use of variable gain amplifiers (VGA). This approach involves the use of a Reconfigurable Ratio Power Divider (RRPD), and does not suffer from the instability, poor efficiency, and worsened SNR associated with the use of VGAs. The RRPD, which is reconfigured manually by means of a potentiometer, is used to feed a 2 x 1 antenna array. By varying the power dividing ratio of the RRPD, continuous beam steering is achieved through passive amplitude control. The antenna was designed to operate at 2.4 GHz and had a continuous steering range from 0° to 21° while maintaining a stable return loss around the centre frequency. An expression that relates the reconfigurable ratio to the variable resistance was derived empirically. The prototype amplitude steerable antenna was fabricated and measured to validate the analyses.
Citation
Iyemeh Egwenike Uchendu, and James Robert Kelly, "Amplitude Steerable Antenna Based on Reconfigurable Ratio Power Divider," Progress In Electromagnetics Research M, Vol. 95, 115-123, 2020.
doi:10.2528/PIERM20061603
References

1. Uchendu, I. and J. R. Kelly, "Survey of beam steering techniques available for millimeter wave applications," Progress In Electromagnetics Research B, Vol. 68, 35-54, 2016.
doi:10.2528/PIERB16030703

2. Hughes, W. J. and W. Thompson, "Tilted directional response patterns formed by amplitude weighting and a single 90 phase shift," Journal of the Acoustical Society of America, Vol. 59, 1040, 1976.
doi:10.1121/1.380968

3. Fraizer, C. H., W. J. Hughes, and W. D. O’Brain, "Analyses of resolution for an amplitude steered array," Journal of the Acoustical Society of America, Vol. 107, 2430, 2000.
doi:10.1121/1.428629

4. Rondineau, S., S. Romisch, D. Popovic, and Z. Popovic, "Multibeam spatially-fed antenna arrays with amplitude-controlled beam steering," 2003 27th Antenna Applications Symposium, 25-37, Moticello, Illinois, 2003.

5. Copeland, J., W. Robertson, and R. Verstraete, "Antennafier arrays," IEEE Trans. Antennas and Propag., Vol. 12, No. 2, 227-233, 1964.
doi:10.1109/TAP.1964.1138196

6. Mielke, W., "An active phase shifter for phased array applications providing amplitude and phase control," 1985 15th European Microwave Conference, 572-577, Paris, France, 1985.
doi:10.1109/EUMA.1985.333539

7. Rabinovich, V. and N. Alexandrov, Antenna Arrays and Automotive Applications, Springer, New York, 2013.
doi:10.1007/978-1-4614-1074-4

8. Fanson, P. L. and K. Chen, "Instabilities and resonances of actively and passively loaded antennas," IEEE Trans. on Antennas and Propag., Vol. 6, 344-347, 1974.
doi:10.1109/TAP.1974.1140775

9. Fujimoto, K., "On the noise performance of amplifier-antenna systems," Proceedings of the IEEE, Vol. 53, No. 10, 1671-1672, Oct. 1965.
doi:10.1109/PROC.1965.4318

10. Beyschlag, V., "Resistors in microwave applications," Appl. Note 28871, 1-6, 2013.

11. Ho, T. Q., C. A. Hewett, L. N. Hunt, T. G. Ready, and R. Mittra, "Lattice spacing effect on scan loss for bat-wing phased array antennas," 2005 IEEE/ACES Int. Conf. Wirel. Commun. Appl. Comput. Electromagn., 245-248, 2005.
doi:10.1109/WCACEM.2005.1469572