Vol. 35

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Dyadic Green's Function for an Unbounded Anisotropic Medium in Cylindrical Coordinates

By K. Li, S.-O. Park, and Wei-Yan Pan
Progress In Electromagnetics Research, Vol. 35, 115-125, 2002
doi:10.2528/PIER01022301

Abstract

The dyadic Green's function for an unbounded anisotropic medium is treated analytically in the Fourier domain. The Green's function, which is expressed as a triple Fourier integral, can be next reduced to a double integral by performing the integration over the longitudinal Fourier variable or the transverse Fourier variable. The singular behavior of Green's dyadic is discussed for the general anisotropic case.

Citation


K. Li, S.-O. Park, and Wei-Yan Pan, "Dyadic Green's Function for an Unbounded Anisotropic Medium in Cylindrical Coordinates," Progress In Electromagnetics Research, Vol. 35, 115-125, 2002.
doi:10.2528/PIER01022301
http://www.jpier.org/PIER/pier.php?paper=0102231

References


    1. Chen, H. C., Theory of Electromagnetic Waves, McGraw-Hill, New York, 1983.

    2. Weiglhofer, W. S., "Dyadic Green’s function for general uniaxial media," Proc. IEE, Vol. 137H, 5-10, Jan. 1990.

    3. Kaklamani, D. I. and N. K. Uzunoglu, "Radiation of a dipole in an infinite triaxial anisotropic medium," Electromag., Vol. 12, 231-245, 1992.
    doi:10.1080/02726349208908313

    4. Cottis, P. G. and G. D. Kondylis, "Properties of the dyadic Green’s function for an unbounded anisotropic medium," IEEE Trans. Antennas Propagat., Vol. 43, 154-161, Feb. 1995.
    doi:10.1109/8.366377

    5. Li, K., "Radiation of a magnetic dipole in an infinite anisotropic plasma medium," Chin. Phys. Lett., Vol. 15, 898-900, Dec. 1998.
    doi:10.1088/0256-307X/15/12/014

    6. Cottis, P. G. and G. D. Kondylis, "Green’s function for an unbounded biaxial medium in cylindrical coordinates," IEEE Trans. Antennas Propagat., Vol. 47, 195-199, Jan. 1999.
    doi:10.1109/8.753010

    7. Bladel, J. V., "Some remarks on Green’s dyadic for infinite space," IRE Trans. Antennas Propagat., Vol. 9, 563-566, Nov. 1961.
    doi:10.1109/TAP.1961.1145064

    8. Fikioris, J. G., "Electromagnetic field inside a current-carrying region," J. Math. Phys., Vol. 6, 1617-1620, 1965.
    doi:10.1063/1.1704702

    9. Yaghjian, A. D., "Electric dyadic Green’s functions in the source regions," Proc. IEE, Vol. 68, 248-263, Feb. 1980.
    doi:10.1109/PROC.1980.11620

    10. Lee, S. W., J. Boersma, C. L. Law, and G. A. Deschamps, "Singularity in Green’s functions and its numerical evaluation," IEEE Trans. Antennas Propagat., Vol. 28, 311-317, May 1980.
    doi:10.1109/TAP.1980.1142342

    11. Asvestas, J. S., "Comments on ‘Singularity in Green’s functions and its numerical evaluation’," IEEE Trans. Antennas Propagat., Vol. 31, 174-177, May 1983.
    doi:10.1109/TAP.1983.1143005

    12. Pathak, P. H., "On the eigenfunction expansion of electromagnetic dyadic Green’s functions," IEEE Trans. Antennas Propagat., Vol. 31, 837-846, Nov. 1983.
    doi:10.1109/TAP.1983.1143151

    13. Chew, W. C., "Some observations on the spatial and eigenfunction representations of dyadic Green’s functions," IEEE Trans. Antennas Propagat., Vol. 37, 1322-1327, Oct. 1989.
    doi:10.1109/8.43544

    14. Zemanian, A. H., Distribution Theory and Transform Analysis, Dover, New York, 1987.

    15. Jakoby, B. and F. Olyslager, "Quasi-static asymptotics of Green dyadics for general bianisotropic media," Arch. Elektron. Ubertragungstech., Vol. 50, 189-195, 1996.

    16. Weiglhofer, W. S. and A. Lakhtakia, "On singularities of dyadic Green’s function and long wavelength scattering," Electromagn., Vol. 15, 209-222, 1995.
    doi:10.1080/02726349508908415