Vol. 38
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Diffraction of a Transverse Electric (TE) X-Wave by Conducting Objects
By
, Vol. 38, 167-198, 2002
Abstract
A study of the diffraction and scattering of a transverse electric X-wave by conducting bodies is presented based on the timedomain, uniform theory of diffraction method and the pulsed plane wave representation of an X-wave. The latter allows the calculation of the diffraction and scattering of each pulsed plane wave component of the incident X-wave at the observation point. The superposition of the individual diffracted and scattered pulsed plane wave components yields the diffracted and scattered field due to an incident X-wave. First, the scattering from a perfectly conducting infinite wedge is studied. Then, the case of a circular conducting disk is considered as an example of a finite scatterer. Numerical results illustrating the effectiveness of the approach, as well as an estimate of the limits of its applicability, are provided.
Citation
Ahmed Mohamed Attiya, Amr Shaarawi, and Ioannis Besieris, "Diffraction of a Transverse Electric (TE) X-Wave by Conducting Objects," , Vol. 38, 167-198, 2002.
doi:10.2528/PIER02052403
References

1. Lu, J. and J. F. Greenleaf, "Nondiffracting X-waves–Exact solutions to free-space scalar wave equation and their finite aperture realization," IEEE Trans. on Ultrason., Ferroelect. Freq. Contr., Vol. 39, 19-31, 1992.
doi:10.1109/58.166806

2. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, 1989.
doi:10.1103/PhysRevA.39.2005

3. Shaarawi, A. M., "Comparison of two localized wave fields generated from dynamic apertures," J. Opt. Soc. Am. A, Vol. 14, 1804-1816, 1997.
doi:10.1364/JOSAA.14.001804

4. Shaarawi, A. M., I. M. Besieris, R. W. Ziolkowski, and S. M. Sedky, "Generation of approximate focus-wave-mode pulses from wideband dynamic Gaussian apertures," J. Opt. Soc. Am. A, Vol. 12, 1954-1964, 1995.
doi:10.1364/JOSAA.12.001954

5. Shaarawi, A. M., I. M. Besieris, A. M. Attiya, and E. A. El- Diwany, "Acoustic X-wave reflection and transmission at a planar interface: spectral analysis," J. Acoust. Soc. Am., Vol. 107, 70-86, 2000.
doi:10.1121/1.428345

6. Attiya, A. M., E. A. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "Reflection and transmission of X-waves in the presence of planarly layered media: the pulsed plane wave representation," Progress In Electromagnetics Research, Vol. 30, 191-211, 2000.
doi:10.2528/PIER99090202

7. Shaarawi, A. M., I. M. Besieris, A. M. Attiya, and E. A. El-Diwany, "Reflection and transmission of an electromagnetic X-wave incident on a planar air-dielectric interface: spectral analysis," Progress in Electromagnetics Research, Vol. 30, 213-250, 2000.
doi:10.2528/PIER00042502

8. Attiya, A. M., E. A. El-Diwany, and A. M. Shaarawi, "Transmission and reflection of TE electromagnetic X-wave normally incident on a lossy dispersive half-space," Proceedings of the 17th National Radio Science Conference, NRSC’2000, B11.1-12, Minufiya University, Egypt, 2000.

9. Attiya, A. M., "Transverse (TE) electromagnetic X-waves: propagation, scattering, diffraction and generation problems,", Ph.D. Thesis, Cairo University, May 2001.

10. Saari, P. and K. Reivelt, "Evidence of X-shaped propagationinvariant localized light waves," Phys. Rev. Lett., Vol. 79, 4135-4138, 1997.
doi:10.1103/PhysRevLett.79.4135

11. Saari, P. and H. S onajalg, "Pulsed bessel beams," Laser Phys., Vol. 7, 32-39, 1997.

12. Donnelly, R. and D. Power, "The behavior of electromagnetic localized waves at a planar interface," IEEE Trans. Antennas Propagat., Vol. 45, 580-591, 1997.
doi:10.1109/8.564083

13. Hillion, P., "How do focus wave modes propagate across a discontinuity in a medium?," Optik, 93, 67-72, 1993.

14. Power, D., R. Donnelly, and MacIsaac, "Spherical scattering of superpositions of localized waves," Phys. Rev., E, Vol. 48, 1410-1417, 1993.
doi:10.1103/PhysRevE.48.1410

15. Hillion, P., "Diffraction of time-dependent electromagnetic pulse by a conducting plane screen," Opt. Comm., Vol. 102, 199-204, 1993.
doi:10.1016/0030-4018(93)90381-E

16. Hillion, P., "Diffraction of focus wave modes at a perfectly conducting screen," Opt. Comm., Vol. 123, 215-224, 1996.
doi:10.1016/0030-4018(95)00397-5

17. Fagerholm, J., A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, "Angular-spectrum representation of nondiffracting X-waves," Phys. Rev. E, Vol. 54, 4347-4352, 1996.
doi:10.1103/PhysRevE.54.4347

18. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

19. McNamara, D. M., C. W. I. Pistorius, and J. A. G. Malherba, "Introduction to the uniform geometrical theory of diffraction,", Artech House, Boston, 1990.

20. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, 116-130, 1962.
doi:10.1364/JOSA.52.000116

21. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Trans. Antennas and Prop., Vol. 32, 252-258, 1984.
doi:10.1109/TAP.1984.1143303

22. Rousseau, P. R. and P. H. Pathak, "Time-domain uniform geometrical theory of diffraction for a curved wedge," IEEE Trans. Antennas and Prop., Vol. 43, 1375-1382, 1995.
doi:10.1109/8.475925

23. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1965.

24. Knott, E. and T. Senior, "Comparison of three high-frequency diffraction techniques," Proc. IEEE, Vol. 62, 1468-1474, 1974.
doi:10.1109/PROC.1974.9653

25. Marsland, D. P., C. A. Balanis, and S. A. Brumley, "Higher order diffractions from a circular disk," IEEE Trans. Antennas and Prop., Vol. 35, 1436-1444, 1987.
doi:10.1109/TAP.1987.1144034

26. Shirai, H. and L. B. Felsen, "Modified GTD for generating complex resonances for flat strips and disks," IEEE Trans. Antennas and Prop., Vol. 34, 779-790, 1986.
doi:10.1109/TAP.1986.1143889

27. Dominek, A. K., "Transient scattering analysis for a circular disk," IEEE Trans. Antennas and Prop., Vol. 39, 815-819, 1991.
doi:10.1109/8.86881

28. Lu, J. and J. F. Greenleaf, "Experimental verification of nondiffracting X-waves," IEEE Trans. on Ultrason., Ferroelect., Freq. Contr., Vol. 39, 441-446, 1992.
doi:10.1109/58.143178

29. Attiya, A. M., E. A. El-Diwany, and A. M. Shaarawi, "Generation of an approximate TE electromagnetic X-wave in free space using Huygen’s aperture," Proceedings of the 16th National Radio Science Conference, NRSC’99, B3.1-11, Ain Shams University, Cairo, Egypt, 1999.

30. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Trans. Antennas and Prop., Vol. 32, 252-258, 1984.
doi:10.1109/TAP.1984.1143303

31. Michaeli, A., "Elimination of infinities in equivalent edge currents, part I: fringe current components," IEEE Trans. Antennas and Prop., Vol. 34, 912-918, 1986.
doi:10.1109/TAP.1986.1143913

32. Knott, E., "The relationship between Mitzner’s ILDC and Michaeli’s equivalent currents," IEEE Trans. Antennas and Prop., Vol. 33, 112-114, 1985.
doi:10.1109/TAP.1985.1143482

33. Johansen, P., "Uniform physical theory of diffraction equivalent edge currents for truncated wedge strips," IEEE Trans. Antennas and Prop., Vol. 44, 989-995, 1996.
doi:10.1109/8.504306

34. Johansen, P., "Time-domain version of the physical theory of diffraction," IEEE Trans. Antennas and Prop., Vol. 47, 261-270, 1999.
doi:10.1109/8.761065

35. Tiberio, R. and S. Maci, "An incremental theory of diffraction: scalar formulation," IEEE Trans. Antennas and Prop., Vol. 42, 600-611, 1994.
doi:10.1109/8.299558

36. Tiberio, R., S. Maci, and A. Toccafondi, "An incremental theory of diffraction: electromagnetic formulation," IEEE Trans. Antennas and Prop., Vol. 43, 87-96, 1995.
doi:10.1109/8.366356