Vol. 39
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
An Effective Power Synthesis Technique for Shaped, Double-Reflector Multifeed Antennas
By
, Vol. 39, 93-123, 2003
Abstract
A new synthesis algorithm for shaped, double-reflector antennas with complex array feed is presented. The approach presented here aims to improve the efficiency of synthesis techniques without missing the required accuracy. The algorithm is based on a convenient splitting of the original problem into two phases, each one involving a sub-problem significantly simpler than the original one. A double reflector synthesis problem involving only Fourier Transform (FT) operators is of concern during the first phase. The subre- flector surface and a first estimate of the main reflector geometry are obtained in this step. A single reflector synthesis problem is considered during the second phase wherein the final main reflector surface and the excitation coefficients of the primary feed array are obtained. While in the first phase only approximate relationships between the unknowns and the secondary radiated field are exploited, in the second phase accurate radiation operators are involved. Despite this accuracy, the second phase is still numerically effective since it involves a single reflector synthesis problem and exploits, as "good" starting point, the main reflector estimate obtained during the first phase. The effectiveness of the approach is due to the fact that the necessity of dealing simultaneously with two reflector surfaces, the key of the synthesis difficulties, is afforded only during the first phase where efficient computational tools are allowed. A numerical example shows the effectiveness of the proposed approach.
Citation
"An Effective Power Synthesis Technique for Shaped, Double-Reflector Multifeed Antennas," , Vol. 39, 93-123, 2003.
doi:10.2528/PIER02052408
References

1. Descardeci, J. C. and C. G. Parini, "Trireflector compact antenna test range," IEE Proc. Microw. Antenna Propag., Vol. 144, No. 5, 305-310, 1997.
doi:10.1049/ip-map:19971295

2. Kildal, P. S., "Synthesis and analysis of a dual-reflector feed for the radiotelescope in Nancy," IEE Proc. Microw. Antennas Propag., Vol. 144, No. 5, 289-296, 1997.
doi:10.1049/ip-map:19971217

3. Kildal, P. S., L. Baker, and T. Hagfors, "The Arecibo upgrading: electrical design and expected performance of the dual-reflector feed system," Special Issue of Proc. IEEE, Vol. 82, No. 5, 714-724, 1994.

4. Viskum, H. H., K. Pontoppidan, P. J. B. Clarricoats, and G. A. E. Crone, "Coverage flexibility by means of a reconfigurable subreflector," IEEE AP-S Symposium Digest, 1378-1381, 1997.
doi:10.1109/APS.1997.631835

5. Viskum, H. H., S. B. Sorensen, and K. Pontoppidan, "A dual reflector system with a reconformable subreflector," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 840-843, 1998.

6. Duan, D. W. and Y. Rahmat-Samii, "A generalized diffraction synthesis technique for high performance reflector antennas," IEEE Trans. Antenn. Propagat., Vol. 43, No. 1, 27-40, 1995.
doi:10.1109/8.366348

7. Westcott, B. S., F. A. Stevens, and F. Brickell, "GO synthesis of offset dual reflectors," IEE Proc. Part. H, Vol. 128, No. 1, 11-18, 1981.

8. Cherrette, A. R., S. W. Lee, and R. J. Acosta, "A method for producing a shaped contour radiation pattern using a single shaped reflector and a single feed," IEEE Trans. Antenn. Propagat., Vol. 37, No. 6, 698-706, 1989.
doi:10.1109/8.29356

9. Bergmann, J., R. C. Brown, P. J. B. Clarricoats, and H. Zhou, "Synthesis of shaped-beam reflector antenna patterns," IEE Proc., Vol. 135, No. 1, 48-53, 1988.

10. Hay, S. G., "Dual-shaped-reflector directivity pattern synthesis using the successive projections method," IEE Proc. Microw. Antennas Propagat., Vol. 146, No. 2, 119-124, 1999.
doi:10.1049/ip-map:19990560

11. Westcott, B. S. and A. A. Zaporozhets, "Dual-reflector synthesis based on analytical gradient-iteration procedures," IEE Proc. Microw. Antennas Propagat., Vol. 142, No. 2, 129-135, 1995.
doi:10.1049/ip-map:19951779

12. Bucci, O. M., G. D'Elia, G. Mazzarella, and G. Panariello, "Antenna pattern synthesis: a new general approach," Proc. of IEEE, Vol. 82, No. 3, 358-371, 1994.
doi:10.1109/5.272140

13. Bucci, O. M., G. D'Elia, and G. Romito, "Synthesis technique for scanning and/or reconfigurable beam reflector antennas with phase-only control," IEE Proc. Part. H, Vol. 13, No. 5, 402-412, 1996.

14. Bucci, O. M., A. Capozzoli, and G. D'Elia, "A global optimization technique in the synthesis of reflector antennas," 17th Annual Review of Progress in Applied Computational Electromagnetics, 19-23, 2001.

15. Hoferer, R. A. and Y. Rahmat-Samii, "A GO-subreflector implementation methodology using a Fourier-Jacobi surface expansion," Proceedings of the IEEE Antennas and Propagation Society, Vol. 4, 2328-2331, 1999.

16. Yaghjian, A. D., "Equivalence of surface current and aperture field integration for reflector antennas," IEEE Transaction on Antennas and Propagat., Vol. AP-32, No. 12, 1355-1358, 1984.
doi:10.1109/TAP.1984.1143261

17. Born, M. and E. Wolf, Principles of Optics, 7th edition, Cambridge University Press, 1999.

18. Westcott, B. S., Shaped Reflectors Antenna Design, London Research Studies Press Ltd., 1983.

19. Luenberger, D. G., Linear and Non Linear Programming, Academic Press London, 1984.