Vol. 38
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
A Hybrid Fdfd-Bie Approach to Two-Dimensional Scattering from an Inhomogeneous Biisotropic Cylinder
By
, Vol. 38, 1-27, 2002
Abstract
The scattering problem for an inhomogeneous twodimensional biisotropic cylinder is solved in the frequency-domain by means of a hybrid method, in which finite difference equations in the interior region are combined with a mesh truncation in terms of a boundary integral equation that realizes a global absorbing boundary condition. The influences of the chirality and non-reciprocity parameters on the scattering properties are investigated. Numerical results for the bistatic echo widths are presented and compared with a reference solutions in the circular cases and it is found that the method yields more accurate results than what can be achieved with a local absorbing boundary condition. It is realized that, for a given mesh, the method presented is computationally slower than a method based on a local absorbing boundary condition but in on the other hand the method is much faster than the readily used method of moments. The present method is thus suitable for solving scattering problems involving scatterers of intermediate sizes.
Citation
Martin Norgren, "A Hybrid Fdfd-Bie Approach to Two-Dimensional Scattering from an Inhomogeneous Biisotropic Cylinder," , Vol. 38, 1-27, 2002.
doi:10.2528/PIER02092503
References

1. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

2. Wang, J. J. H., Generalized Moment Methods in Electromagnetics, Wiley, New York, 1991.

3. Kluskens, M. S. and E. H. Newman, "Scattering by a chiral cylinder of arbitrary cross section," IEEE Trans. Ant. Prop., Vol. 38, No. 9, 1448-1455, September 1990.
doi:10.1109/8.56998

4. Cheng, D. and W. Lin, "New theorems for bianisotropic media," Int. J. Infrared and MM Waves, Vol. 13, No. 3, 351-359, March 1992.
doi:10.1007/BF01010670

5. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys., Vol. 114, No. 2, 185-200, October 1994.
doi:10.1006/jcph.1994.1159

6. Pekel, U. and R. Mittra, "A finite-element frequency-domain application of the perfectly matched layer (PML) concept," Microwave and Opt. Tech. Letters, Vol. 9, No. 3, 117-121, June 1995.
doi:10.1002/mop.4650090303

7. Rappaport, C. M., "Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space," IEEE Trans. Magn., Vol. 32, No. 3, 968-974, May 1996.
doi:10.1109/20.497403

8. Gonzalez Garcıa, S., I. Villo Perez, R. Gomez Martın, and B. Garcıa Olmedo, "Extension of Berenger’s PML for bi-isotropic media," IEEE Microw. Guided Wave Lett., Vol. 8, No. 9, 297-299, September 1998.
doi:10.1109/75.720460

9. Kuzuoglu, M. and R. Mittra, "A systematic approach to the derivation of constitutive parameters of a perfectly matched absorber," IEEE Microw. Guided Wave Lett., Vol. 8, No. 9, 313-315, June 1998.
doi:10.1109/75.720466

10. Mei, K. K., R. Pous, Z. Chen, Y.-W. Liu, and M. D. Prouty, "Measured equation of invariance: a new concept in field computations," IEEE Trans. Ant. Prop., Vol. 42, No. 3, 320-328, March 1994.
doi:10.1109/8.280717

11. Hong, W., Y. W. Liu, and K. K. Mei, "Application of the measured equation of invariance to solve scattering problems involving a penetrable medium," Radio Science, Vol. 29, No. 4, 897-906, July–August 1994.
doi:10.1029/94RS00748

12. Chen, J. and W. Hong, "EM scattering analysis of a ferrite cylinder by a FD-FD technique with an effective absorbing boundary condition and MEI," Int. J. Infrared and Millimeter Waves, Vol. 16, No. 12, 2209-2221, 1995.
doi:10.1007/BF02073421

13. Cermak, I. A. and P. Silvester, "Solution of 2-dimensional field problems by boundary relaxation," Proc. IEE, Vol. 115, No. 9, 1341-1348, September 1968.

14. McDonald, B. H. and A. Wexler, "Finite-element solution of unbounded field problems," IEEE Trans. Microw. Theory Tech., Vol. 20, No. 12, 841-847, December 1972.
doi:10.1109/TMTT.1972.1127895

15. Jin, J. M., J. L. Volakis, and J. D. Collins, "A finite-elementboundary- integral method for scattering and radiation by two- and three-dimensional structures," IEEE Ant. Prop. Mag., Vol. 33, No. 3, 22-32, June 1991.
doi:10.1109/74.88218

16. Sheng, X.-Q., J. M. Jin, J. Song, C. C. Lu, and W. C. Chew, "On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering," IEEE Trans. Ant. Prop., Vol. 46, No. 3, 303-311, March 1998.
doi:10.1109/8.662648

17. Rogier, H., F. Olyslager, and D. De Zutter, "A new hybrid FDTDBIE approach to model electromagnetic scattering problems," IEEE Microw. Guided Wave Lett., Vol. 8, No. 3, 138-140, March 1998.
doi:10.1109/75.661141

18. Song, J., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Ant. Prop., Vol. 45, No. 10, 1488-1493, October 1997.
doi:10.1109/8.633855

19. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Boston & London, 1994.

20. Monzon, J. C., "Scattering by a biisotropic body," IEEE Trans. Ant. Prop., Vol. 43, No. 11, 1288-1296, November 1995.
doi:10.1109/8.475101

21. He, S. and J. Cao, "Scattering from a biisotropic object of arbitrary shape," J. Electromagnetic Waves and Applic., Vol. 12, No. 12, 1547-1574, December 1998.
doi:10.1163/156939398X00485

22. Lindell, I. V., A. H. Sihvola, P. Puska, and L. H. Ruotanen, "Conditions for the parameter dyadics of lossless bianisotropic media," Microwave and Opt. Tech. Letters, Vol. 8, No. 5, 268-272, April 1995.
doi:10.1002/mop.4650080515

23. Strom, S., "Introduction to integral representations and integral equations for time-harmonic acoustic, electromagnetic and elastodynamic wave fields," Field Representations and Introduction to Scattering, V. V. Varadan, A. Lakhtakia, and V. K. Varadan (eds.), Vol. 1, Elsevier Science Publ., 1991.

24. Weston, V. H., "Factorization of the wave equation in a nonplanar stratified medium," J. Math. Phys., Vol. 29, No. 1, 36-45, January 1988.
doi:10.1063/1.528186

25. Weston, V. H., "Time-domain wave splitting of Maxwell’s equations," J. Math. Phys., Vol. 34, No. 4, 1370-1392, April 1993.
doi:10.1063/1.530163

26. Cao, J. and S. He, "An exact absorbing boundary condition and its application to three-dimensional scattering from thin dispersive structures," J. Acoust. Soc. Am., Vol. 99, No. 4, 1854-1861, April 1996.
doi:10.1121/1.415367

27. Morita, N., N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics, Artech House, Boston & London, 1990.

28. Collin, R. E., Foundations for Microwave Engineering, 62-64, New York, McGraw-Hill, 1992.

29. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface Sci., Vol. 66, 105-109, August 1978.
doi:10.1016/0021-9797(78)90189-3

30. Kluskens, M. S. and E. H. Newman, "Scattering by a multilayer chiral cylinder," IEEE Trans. Ant. Prop., Vol. 39, No. 1, 91-96, March 1991.
doi:10.1109/8.64441