Vol. 46
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Solving Mixed Dielectric/Conducting Scattering Problem Using Adaptive Integral Method
By
, Vol. 46, 143-163, 2004
Abstract
This paper presents the adaptive integral method (AIM) utilized to solve scattering problem of mixed dielectric/conducting objects. The scattering problem is formulated using the Poggio-Miller- Chang-Harrington-Wu-Tsai (PMCHWT) formulation and the electric field integral equation approach for the dielectric and conducting bodies, respectively. The integral equations solved using these approaches can eliminate the interior resonance of dielectric bodies and produce accurate results. The method of moments (MoM) is applied to discretize the integral equations and the resultant matrix system is solved by an iterative solver. The AIM is used then to reduce the memory requirement for storage and to speed up the matrix-vector multiplication in the iterative solver. Numerical results are finally presented to demonstrate the accuracy and efficiency of the technique.
Citation
Wei-Bin Ewe, Joshua Le-Wei Li, and Mook-Seng Leong, "Solving Mixed Dielectric/Conducting Scattering Problem Using Adaptive Integral Method," , Vol. 46, 143-163, 2004.
doi:10.2528/PIER03091001
References

1. Rokhlin, V., "Rapid solution of integral equation of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, No. 2, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C

2. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 6, 7-12, 1993.
doi:10.1109/74.250128

3. Lu, C. C. and W. C. Chew, "A multilevel algorithm for solving boundary integral equations of wave scattering," Microwave Opt. Tech. Lett., Vol. 7, No. 10, 466-470, 1994.

4. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetics scattering," Microwave Opt. Tech. Lett., Vol. 10, No. 1, 14-19, 1995.

5. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

6. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 5, 635-640, 1986.
doi:10.1109/TAP.1986.1143871

7. Nie, X. C., L. W. Li, N. Yuan, and Y. T. Soon, "Precorrected- FFT algorithm for solving combined field integral equations in electromagnetic scattering," J. Electromag. Waves Applicat., Vol. 16, No. 8, 1171-1187, 2002.

8. Nie, X. C., L.W. Li, N. Yuan, Y. T. Soon, and Y. B. Gan, "Fast analysis of scattering by arbitrarily shaped three-dimensional objects using the precorrected-FFT method," Microwave Opt. Tech. Lett., Vol. 34, No. 6, 438-442, 2002.
doi:10.1002/mop.10488

9. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "A fast integral equation solver for electromagnetic scattering problems," IEEE APSInt. Symp. Dig., Vol. 1, 416-419, 1994.

10. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 10, 1225-1251, 1996.
doi:10.1029/96RS02504

11. Ling, F., C. F. Wang, and J. M. Jin, "Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures," J. Electromag. Waves Applicat., Vol. 12, No. 8, 1021-1038, 1998.

12. Ling, F., C. F. Wang, and J. M. Jin, "An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex-image method," IEEE Trans. Antennas Propagat., Vol. 48, No. 5, 832-839, 2000.

13. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 32, No. 8, 797-806, 1984.
doi:10.1109/TAP.1984.1143430

14. Medgyesi-Mitschang, L. N., J. M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. Am. A., Vol. 11, No. 4, 1383-1398, 1994.

15. Li, J. Y., L. W. Li, and Z. Z. Oo, "Electromagnetic scattering by a mixture of conducting and dielectric objects: Analysis using method of moments," accepted by IEEE Trans. Vehicular Technology..

16. Poggio, A. J. and E. K. Miller, "Integral equation solution of three dimensional scattering problems," Computer Techniques for Electromagnetics, 1973.

17. Chang, Y. and R. F. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propagat., Vol. 25, No. 6, 789-795, 1977.
doi:10.1109/TAP.1977.1141685

18. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, No. 5, 709-718, 1977.

19. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818