Vol. 47
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-04-15
Numerical Dispersion and Impedance Analysis for 3D Perfectly Matched Layers Used for Truncation of the FDTD Computations
By
, Vol. 47, 193-212, 2004
Abstract
The 3D Berenger's and uniaxial perfectly matched layers used for the truncation of the FDTD computations are theoretically investigated respectively in the discrete space, including numerical dispersion and impedance characteristics. Numerical dispersion for both PMLs is different from that of the FDTD equations in the normal medium due to the introduction of loss. The impedance in 3D homogeneous Berenger's PML medium is the same as that in the truncated normal medium even in the discrete space, however, the impedance in 3D homogenous UPML medium is different, but the discrepancy smoothly changes as the loss in the UPML medium slowly change. Those insights acquired can help to understand why both 3D PMLs can absorb the outgoing wave with arbitrary incidence, polarization, and frequency, but with different efficiency.
Citation
Weiliang Yuan, and Er Ping Li, "Numerical Dispersion and Impedance Analysis for 3D Perfectly Matched Layers Used for Truncation of the FDTD Computations," , Vol. 47, 193-212, 2004.
doi:10.2528/PIER03121002
References

1. Taflove, A., Advances in Computational Electrodynamics, the Finite-Difference Time-Domain Method, Artech House, 1998.

2. Mur, G., "Absorbing boundary conditions for the finitedifference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat., Vol. 23, 377-382, 1981.

3. Liao, Z. P., H. L. Wong, B. Yang, and Y. Yuan, "A transmitting boundary for transient wave analyses," Scientia Sinica, Vol. 27, 1063-1076, 1984.

4. Mei, K. K. and J. Fang, "Superabsorption — a method to improve absorbing boundary conditions," IEEE Trans. Antennas Propagat., Vol. 40, 1001-1010, 1992.
doi:10.1109/8.166524

5. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, 665-686, 1999.

6. Buksas, M. W., "Implementing the perfectly matched layer absorbing boundary condition with mimetic differencing schemes," Progress In Electromagnetics Research, Vol. 32, 383-411, 2001.
doi:10.2528/PIER00080115

7. Li, L. W., P. S. Kooi, M. S. Leong, and S. T. Chew, "FDTD analysis of sidecoupled microstrip filter," Journal of Electromagnetic Waves and Applications, Vol. 14, 1533-1548, 2000.

8. Berenger, J., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

9. Berenger, J., "Three dimensional perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 127, 363-379, 1996.
doi:10.1006/jcph.1996.0181

10. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Microwave and Optical Technology Letters, Vol. 7, 599-604, 1994.

11. Gedney, S. D., "An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propagat., Vol. 44, 1630-1639, 1996.
doi:10.1109/8.546249

12. Tang, J., K. D. Paulsen, and S. A. Haider, "Perfectly matched layer mesh terminations for nodal-based finite element methods in electromagnetic scattering," IEEE Trans. Antennas and Propagat., Vol. 46, 507-516, 1998.
doi:10.1109/8.664114

13. Pena, N. and M. M. Ney, "Absorbing boundary conditions using perfectly matched layer (PML) technique for three-dimensional TLM simulations," IEEE Trans. Microwave Theory Tech., Vol. 45, 1749-1755, 1997.
doi:10.1109/22.641722

14. Qi, Q. and T. L. Geers, "Evaluation of perfectly matched layer for computational acoustics," Journal of Computational Physics, Vol. 139, 166-183, 1998.
doi:10.1006/jcph.1997.5868

15. Prescott, D. T. and N. V. Shuley, "Reflection analysis of FDTD boundary conditions — Part II: Berenger's PML absorbing layers," IEEE Trans. Microwave Theory Tech., Vol. 45, 1171-1178, 1997.
doi:10.1109/22.618404