1. Golik, W. L., "Sparsity and conditioning of impedance matrices obtained with semi-orthogonal and bi-orthogonal wavelet bases," IEEE Trans. Antennas Propagat., Vol. 48, No. 4, 473-481, 2000.
doi:10.1109/8.843660
2. Rokhlin, V., "Diagonal forms of translation operators for the Helmholtz equation in three dimensions," Al Comput. Harmonic Anal., Vol. 1, 82-93, 1993.
doi:10.1006/acha.1993.1006
3. Canning, F. X., "Sparse approximations for solving integral equations with oscillatory kernels," SIAM J. Sci. Statist. Comput., Vol. 13, No. 1, 71-87, 1992.
doi:10.1137/0913004
4. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Fast integral-equation solver for electromagnetic scattering problems," 10th Annu. Rev. Progress Appl. Computat. Electromagn., 1994.
5. Steinberg, B. Z. and Y. Leviatan, "On the use of wavelet expansion in the method of moment," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 610-619, 1993.
doi:10.1109/8.222280
6. Kim, H. and H. Ling, "On the application of fast wavelet transform to the integral equation solution of electromagnetic scattering problems," Microwave Opt. Technol. Lett., Vol. 6, No. 3, 168-173, 1993.
7. Sabetfakhri, K. and L. P. B. Katehi, "Analysis of integrated millimeter-wave and sub-millimeter-wave waveguides using orthonormal wavelet expansion," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2412-2422, 1994.
doi:10.1109/22.339775
8. Wagner, R. L. and W. C. Chew, "A study of wavelets for the solution of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 43, No. 8, 802-805, 1995.
doi:10.1109/8.402199
9. Xiang, Z. and Y. Lu, "An effective wavelet matrix transform approach for efficient solutions of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 45, No. 8, 1205-1213, 1997.
doi:10.1109/8.611238
10. Ning, G., K. Yashiro, and S. Ohkawa, "Wavelet matrix transform approach for the solution of electromagnetic integral equations," Proc. IEEE Int. Antennas Propagat. Symp., Vol. 1, No. 7, 364-367, 1999.
11. Quan, W. and I. R. Ciric, "On the semi-orthogonal wavelet matrix transform approach for the solution of integral equations," Proc. IEEE Int. Antennas Propagat. Symp., Vol. 1, No. 7, 360-363, 1999.
12. Waller, M. L. and S. M. Rao, "Application of adaptive basis functions for a diagonal moment matrix solution of arbitrarily shaped three-dimensional conducting body problems," IEEE Trans. Antennas Propagat., Vol. 50, No. 10, 1445-1452, 2002.
doi:10.1109/TAP.2002.802095
13. Daubechies, I., "Orthonormal bases of compactly supported wavelets," Comm. Pure Appl. Math., Vol. 41, 909-996, 1988.
14. Guan, N., K. Yashiro, and S. Ohkawa, "On a choice of wavelet bases in the wavelet transform approach," IEEE Trans. Antennas Propagat., Vol. 48, No. 8, 2000.
15. Yu, J. and A. A. Kishk, "Use of wavelets transform to the method of moment matrix arising from electromagnetic scattering problems of 2D ob jects due to oblique plane wave incidence," Microwave and Optical Technology Letters, Vol. 34, No. 2, 130-134, 2002.
doi:10.1002/mop.10394
16. Yu, J. and A. A. Kishk, "Extension of impedance matrix compression method with wavelet transform for 2-D conducting and dielectric scattering ob jects due to oblique plane wave incidence," Microwave and Optical Technology Letters, Vol. 34, No. 1, 53-56, 2002.
doi:10.1002/mop.10371
17. Sleijpe, G. and D. Fokkema, "Bi-CGSTAB(l) for linear equations involving unsymmetric matrices with complex spectrum," ETNA, Vol. 1, 11-32, 1993.
18. Deng, H. and H. Ling, "On a class of predefined wavelet packet bases for efficient representation of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 47, No. 12, 1772-1779, 1999.
doi:10.1109/8.817652
19. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric systems," SIAM J. Sci. Statist. Comput., Vol. 12, No. 3, 631-644, 1992.
doi:10.1137/0913035
20. Gutknecht, M. H., "Variants of Bi-CGSTAB for matrices with complex spectrum," SIAM J. Sci. Statist. Comput., Vol. 14, 1020-1033, 1993.
doi:10.1137/0914062
21. SAAD, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.