Vol. 52
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-12-13
A Combined BI-Cgstab (1) and Wavelet Transform Method for EM Problems Using Method of Moments
By
Progress In Electromagnetics Research, Vol. 52, 205-224, 2005
Abstract
An efficient technique for the solution of large-scale electromagnetic radiation and scattering problems arising from the surface integral equations and the method of moments is developed. The conventional MoM basis and testing functions are used to discretize the integral equations resulting in a dense impedance matrix. A block-partitioned wavelet transform is then employed to sparsify the matrix. Full advantage is taken of the sparse nature of the mathematical model to solve the system of equations by means of the recently introduced Stabilized Bi-Conjugate Gradient method (Bi-CGSTAB (l)). Various problems are considered involving perfect electric conductor and dielectric material. Results are compared to the corresponding results obtained via the direct solution, or LU decomposition, of the original MoM dense matrix. Excellent results are obtained in a very efficient manner. By block partitioning the MoM impedance matrix as it is built and performing the wavelet transform on the matrix blocks, analysis of very large electromagnetic problems becomes possible in a very efficient and accurate manner.
Citation
Mohammad Zunoubi, and Ahmed Kishk, "A Combined BI-Cgstab (1) and Wavelet Transform Method for EM Problems Using Method of Moments," Progress In Electromagnetics Research, Vol. 52, 205-224, 2005.
doi:10.2528/PIER04080903
References

1. Golik, W. L., "Sparsity and conditioning of impedance matrices obtained with semi-orthogonal and bi-orthogonal wavelet bases," IEEE Trans. Antennas Propagat., Vol. 48, No. 4, 473-481, 2000.
doi:10.1109/8.843660

2. Rokhlin, V., "Diagonal forms of translation operators for the Helmholtz equation in three dimensions," Al Comput. Harmonic Anal., Vol. 1, 82-93, 1993.
doi:10.1006/acha.1993.1006

3. Canning, F. X., "Sparse approximations for solving integral equations with oscillatory kernels," SIAM J. Sci. Statist. Comput., Vol. 13, No. 1, 71-87, 1992.
doi:10.1137/0913004

4. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Fast integral-equation solver for electromagnetic scattering problems," 10th Annu. Rev. Progress Appl. Computat. Electromagn., 1994.

5. Steinberg, B. Z. and Y. Leviatan, "On the use of wavelet expansion in the method of moment," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 610-619, 1993.
doi:10.1109/8.222280

6. Kim, H. and H. Ling, "On the application of fast wavelet transform to the integral equation solution of electromagnetic scattering problems," Microwave Opt. Technol. Lett., Vol. 6, No. 3, 168-173, 1993.

7. Sabetfakhri, K. and L. P. B. Katehi, "Analysis of integrated millimeter-wave and sub-millimeter-wave waveguides using orthonormal wavelet expansion," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2412-2422, 1994.
doi:10.1109/22.339775

8. Wagner, R. L. and W. C. Chew, "A study of wavelets for the solution of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 43, No. 8, 802-805, 1995.
doi:10.1109/8.402199

9. Xiang, Z. and Y. Lu, "An effective wavelet matrix transform approach for efficient solutions of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 45, No. 8, 1205-1213, 1997.
doi:10.1109/8.611238

10. Ning, G., K. Yashiro, and S. Ohkawa, "Wavelet matrix transform approach for the solution of electromagnetic integral equations," Proc. IEEE Int. Antennas Propagat. Symp., Vol. 1, No. 7, 364-367, 1999.

11. Quan, W. and I. R. Ciric, "On the semi-orthogonal wavelet matrix transform approach for the solution of integral equations," Proc. IEEE Int. Antennas Propagat. Symp., Vol. 1, No. 7, 360-363, 1999.

12. Waller, M. L. and S. M. Rao, "Application of adaptive basis functions for a diagonal moment matrix solution of arbitrarily shaped three-dimensional conducting body problems," IEEE Trans. Antennas Propagat., Vol. 50, No. 10, 1445-1452, 2002.
doi:10.1109/TAP.2002.802095

13. Daubechies, I., "Orthonormal bases of compactly supported wavelets," Comm. Pure Appl. Math., Vol. 41, 909-996, 1988.

14. Guan, N., K. Yashiro, and S. Ohkawa, "On a choice of wavelet bases in the wavelet transform approach," IEEE Trans. Antennas Propagat., Vol. 48, No. 8, 2000.

15. Yu, J. and A. A. Kishk, "Use of wavelets transform to the method of moment matrix arising from electromagnetic scattering problems of 2D ob jects due to oblique plane wave incidence," Microwave and Optical Technology Letters, Vol. 34, No. 2, 130-134, 2002.
doi:10.1002/mop.10394

16. Yu, J. and A. A. Kishk, "Extension of impedance matrix compression method with wavelet transform for 2-D conducting and dielectric scattering ob jects due to oblique plane wave incidence," Microwave and Optical Technology Letters, Vol. 34, No. 1, 53-56, 2002.
doi:10.1002/mop.10371

17. Sleijpe, G. and D. Fokkema, "Bi-CGSTAB(l) for linear equations involving unsymmetric matrices with complex spectrum," ETNA, Vol. 1, 11-32, 1993.

18. Deng, H. and H. Ling, "On a class of predefined wavelet packet bases for efficient representation of electromagnetic integral equations," IEEE Trans. Antennas Propagat., Vol. 47, No. 12, 1772-1779, 1999.
doi:10.1109/8.817652

19. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric systems," SIAM J. Sci. Statist. Comput., Vol. 12, No. 3, 631-644, 1992.
doi:10.1137/0913035

20. Gutknecht, M. H., "Variants of Bi-CGSTAB for matrices with complex spectrum," SIAM J. Sci. Statist. Comput., Vol. 14, 1020-1033, 1993.
doi:10.1137/0914062

21. SAAD, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.