Vol. 61

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2006-04-03

Infrared Wave Propagation in a Helical Waveguide with Inhomogeneous Cross Section and Applications

By Zion Menachem and M. Mond
Progress In Electromagnetics Research, Vol. 61, 159-192, 2006
doi:10.2528/PIER06020205

Abstract

This paper presents an improved approach for the propagation of electromagnetic (EM) fields along a helical dielectric waveguide with a circular cross section. The main ob jective is to develop a mode model for infrared (IR) wave propagation along a helical waveguide, in order to provide a numerical tool for the calculation of the output fields, output power density and output power transmission for an arbitrary step's angle of the helix. Another objective is to apply the inhomogeneous cross section for a hollow waveguide. The derivation is based on Maxwell's equations. The longitudinal components of the fields are developed into the Fourier- Bessel series. The transverse components of the fields are expressed as functions of the longitudinal components in the Laplace plane and are obtained by using the inverse Laplace transform by the residue method. The separation of variables is obtained by using the orthogonal- relations. This model enables us to understand more precisely the influence of the step's angle and the radius of the cylinder of the helix on the output results. The output power transmission and output power density are improved by increasing the step's angle or the radius of the cylinder of the helix, especially in the cases of space curved waveguides. This mode model can be a useful tool to improve the output results in all the cases of the hollow helical waveguides (e.g., in medical and industrial regimes).

Citation

 (See works that cites this article)
Zion Menachem and M. Mond, "Infrared Wave Propagation in a Helical Waveguide with Inhomogeneous Cross Section and Applications," Progress In Electromagnetics Research, Vol. 61, 159-192, 2006.
doi:10.2528/PIER06020205
http://www.jpier.org/PIER/pier.php?paper=0602025

References


    1. Harrington, J. A. and Y. Matsuura, "Review of hollow waveguide technology," Biomedical Optoelectronic Instrumentation, Vol. 2396, 4-14, 1995.

    2. Harrington, J. A., "A review of IR transmitting, hollow waveguides," Fiber and Integrated Optics, Vol. 19, 211-228, 2000.
    doi:10.1080/01468030050058794

    3. Marcatili, E. A. J. and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bel l Syst. Tech. J., Vol. 43, 1783-1809, 1964.

    4. Marhic, M. E., "Mode-coupling analysis of bending losses in IR metallic waveguides," Appl. Opt., Vol. 20, 3436-3441, 1981.

    5. Miyagi, M., K. Harada, and S. Kawakami, "Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature," IEEE Trans. Microwave Theory Tech., Vol. MTT-32, 513-521, 1984.
    doi:10.1109/TMTT.1984.1132715

    6. Croitoru, N., E. Goldenberg, D. Mendlovic, S. Ruschin, and N. Shamir, "Infrared chalcogenide tube waveguides," SPIE, Vol. 618, 140-145, 1986.

    7. Melloni, A., F. Carniel, R. Costa, and M. Martinelli, "Determination of bend mode characteristics in dielectric waveguides," J. Lightwave Technol., Vol. 19, 571-577, 2001.
    doi:10.1109/50.920856

    8. Bienstman, P., M. Roelens, M. Vanwolleghem, and R. Baets, "Calculation of bending losses in dielectric waveguides using eigenmode expansion and perfectly matched layers," IEEE Photon. Technol. Lett., Vol. 14, 164-166, 2002.
    doi:10.1109/68.980493

    9. Mejias, P. M., "Light propagation through inhomogeneous media with radial refractive index: application to thermal blooming," Appl. Opt., Vol. 20, 4287-4295, 1981.

    10. Mendlovic, D., E. Goldenberg, S. Ruschin, J. Dror, and N. Croitoru, "Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides," Appl. Opt., Vol. 28, 708-712, 1989.

    11. Morhaim, O., D. Mendlovic, I. Gannot, J. Dror, and N. Croitoru, "Ray model for transmission of infrared radiation through multibent cylindrical waveguides," Opt. Eng., Vol. 30, 1886-1891, 1991.
    doi:10.1117/12.56016

    12. Kark, K. W., "Perturbation analysis of electromagnetic eigen- modes in toroidal waveguides," IEEE Trans. Microwave Theory Tech., Vol. MTT-39, 631-637, 1991.
    doi:10.1109/22.76425

    13. Lewin, L., D. C. Chang, and E. F. Kuester, Electromagnetic Waves and Curved Structures, 58-68, Chap. 6, 58-68, Peter Peregrinus Ltd., London, 1977.

    14. Ghosh, S., P. K. Jain, and B. N. Basu, "Fast-wave analysis of an inhomogeneously-loaded helix enclosed in a cylindrical waveguide," Progress in Electromagnetics Research, Vol. 18, 19-43, 1998.

    15. Kumar, D. and O. N. Singh II, "Elliptical and circular step-index fibers with conducting helical windings on the core-cladding boundaries for different winding pitch angles — A comparative modal dispersion analysis," Progress in Electromagnetics Research, Vol. 52, 1-21, 2005.
    doi:10.2528/PIER04052002

    16. Menachem, Z., N. Croitoru, and J. Aboudi, "Improved mode model for infrared wave propagation in a toroidal dielectric waveguide and applications," Opt. Eng., Vol. 41, 2169-2180, 2002.
    doi:10.1117/1.1496490

    17. Collin, R. E., Foundation for Microwave Engineering, McGraw- Hill, New York, 1996.

    18. Yariv, A., Optical Electronics, 3rd ed., Holt-Saunders Int. Editions, 1985.

    19. Baden Fuller, A. J., Microwaves, 118-120, Chap. 5, A. Wheaton and Co. Ltd, Pergamon Press, Oxford, 1969.

    20. Olver, F. W. J., Royal Society Mathematical Tables, 2-30, Zeros and Associated Values, University Press Cambridge, 1960.

    21. Jahnke, E. and F. Emde, Tables of Functions with Formulae and Curves, Chap. 8, 166, Dover publications, New York, 1945.

    22. The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, Wilkinson House, Oxford.

    23. Menachem, Z., "Wave propagation in a curved waveguide with arbitrary dielectric transverse profiles," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 10, 1423-1424, 2003.
    doi:10.1163/156939303322519612

    24. Croitoru, N., A. Inberg, M. Oksman, and M. Ben-David, "Hollow silica, metal and plastic waveguides for hard tissue medical applications," SPIE, Vol. 2977, 30-35, 1997.
    doi:10.1117/12.271023