Vol. 61

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2006-05-20

Using Electromagnetic Bandgap Superstrate to Enhance the Bandwidth of Probe-Fed Microstrip Antenna

By Abbas Pirhadi, Mohammad Hakkak, and Farshad Keshmiri
Progress In Electromagnetics Research, Vol. 61, 215-230, 2006
doi:10.2528/PIER06021801

Abstract

In this paper, the effect of Electromagnetic Bandgap (EBG) Superstrates on return loss of the Probe-Fed Microstrip Antenna (PFMA) has been examined. Originally the EBG superstrate layer made by Frequency Selective Surface (FSS) layers is used to increase the directivity of the PFMA, but to increase the efficiency of the whole structure including the PFMA and EBG superstrate it is necessary to have suitable impedance matching. In this paper the EBG superstrate as a resonance load to the primary radiation source (PFMA) and then by choosing the appropriate geometrical parameters of the structure we can obtain suitable impedance matching beside the directivity enhancement of the primary radiation source.

Citation

 (See works that cites this article)
Abbas Pirhadi, Mohammad Hakkak, and Farshad Keshmiri, "Using Electromagnetic Bandgap Superstrate to Enhance the Bandwidth of Probe-Fed Microstrip Antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801
http://www.jpier.org/PIER/pier.php?paper=0602181

References


    1. Maagt, P. D., R. Gonzalo, Y. C. Vardaxoglou, and andJ. M. Baracco, "Electromagnetic bandgap antennas and components for mi- crowaveand(sub)millimeterwaveapplication," IEEETrans.An- tennasandPropagation, Vol. 51, No. 10, 2667-2677, 2003.
    doi:10.1109/TAP.2003.817566

    2. Chang, C. C., Y. Qian, and andT. Itoh, "Analysisandapplications of uniplanar compact photonic bandgap structures," Progress In Electromagnetics Research, Vol. 41, 211-235, 2003.

    3. Agi, K., M. Mo jahedi, B. Minhas, and K. J. Malloy, "The effects of an electromagnetic crystal substrate on a microstrip patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 4, 451-456, 2002.
    doi:10.1109/TAP.2002.1003380

    4. Yang, H.-Y. D. and J. Wang, "Surface waves of printed antennas on planar artificial periodic dielectric structures," IEEE Transaction on Antennas and Propagation, Vol. 49, No. 3, 444-450, 2001.
    doi:10.1109/8.918619

    5. Broas, R. F. J., D. F. Sievenpiper, and E. Yablonovitch, "An application of high-impedance ground planes to phased array antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 4, 1377-1381, 2005.
    doi:10.1109/TAP.2005.844408

    6. Sievenpiper, D., L. Zhang, F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    7. Yang, F. and Y. Rahmat-Samii, "Reflection phase characteriza- tions of the EBG ground plane for low profile wire antenna applica- tions," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, 2003.
    doi:10.1109/TAP.2003.817559

    8. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
    doi:10.1109/TAP.2004.834135

    9. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 8-17, 2005.
    doi:10.1109/TAP.2004.840540

    10. Simovski, C. R. and A. A. Sochava, "High-impedance surfaces based on self-resonant grids. Analytical modeling and numerical simulations," Progress In Electromagnetics Research, Vol. 43, 239-256, 2003.

    11. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic bandgap antennas," IEEE, Vol. 47, No. 11, 2115-2122, 1999.

    12. Akalin, T., J. Danglot, O. Vanbesien, and Lippens, "High directive dipole antenna embedded in a Fabry-Perot type cavity," IEEE Microwave and Wireless Components, Vol. 12, No. 2, 48-50, 2002.
    doi:10.1109/7260.982873

    13. Weily, A. R., L. Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, "A planar resonator antenna based on a woodpile EBG material," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 216-223, 2005.
    doi:10.1109/TAP.2004.840531

    14. Weily, A. R., K. P. Esselle, B. C. Sanders, and T. S. Bird, "High gain 1-D resonator antenna," Microwave and Optical Technology Letters, Vol. 47, No. 2, 107-114, 2005.
    doi:10.1002/mop.21095

    15. Cheype, C., C. Serier, M. Thevenot, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
    doi:10.1109/TAP.2002.800699

    16. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
    doi:10.2528/PIER04070701

    17. Lee, Y. J. U., J. Yeo, K. D. Ko, R. Mittra, Y. Lee, and W. S. Park, "A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement," Microwave and Optical Technology Letters, Vol. 42, No. 1, 25-31, 2005.
    doi:10.1002/mop.20196

    18. Lee, Y. J. U., J. Yeo, R. Mittra, Y. Lee, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defect for a class of patch antennas as spatial angular filters," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 224-235, 2005.
    doi:10.1109/TAP.2004.840521

    19. Cheype, C., C. Serier, M. Thevenot, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
    doi:10.1109/TAP.2002.800699

    20. Enoch, S., G. Tayeb, and B. Gralak, "The richness of dispersion relation of electromagnetic bandgap materials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2659-2666, 2003.
    doi:10.1109/TAP.2003.817549

    21. Lee, Y. J. U., J. Yeo, K. D. Ko, R. Mittra, Y. Lee, and W. S. Park, "A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement," Microwave and Optical Technology Letters, Vol. 42, No. 1, 25-31, 2005.
    doi:10.1002/mop.20196

    22. Ansoft Designer Release 2.0, Ansoft Corp., 2003. , 2003.

    23. HFSS Ansoft Designer Release 9.2, Ansoft Corp., 2003., 2003.