Vol. 66
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-12-17
Planar Metamaterials Supporting Multiple Left-Handed Modes
By
, Vol. 66, 239-251, 2006
Abstract
Planar metamaterials with spiral elements are suggested in this paper to support multiple left-handed (LH) modes. Compared with previously proposed split-loop metamaterial, spiral arrays are found to support hybrid TE and TM LH modes. Dispersion diagrams and field distributions are carried out to demonstrate the existence of the hybrid LH modes. Array with double-spiral elements can be viewed as a spiral split-loop array, which leads a very interesting dual-LH-band feature. It can be explained as a combination of spiral and split-ring arrays has similar mechanism with the multiband frequency selective surfaces (FSS), which have multiple resonators in a single unit cell. The two LH modes are TE and TM modes respectively. Validations of the multiple LH modes are presented by means of full-wave simulation using commercial software (Ansoft HFSS).
Citation
Yunnchuan Guo, and Rui-Min Xu, "Planar Metamaterials Supporting Multiple Left-Handed Modes," , Vol. 66, 239-251, 2006.
doi:10.2528/PIER06113001
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Eleftheriades, G. V., A. Iyer, and P. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 12, 2702-2711, 2002.
doi:10.1109/TMTT.2002.805197

5. Caloz, C., H. Okabe, I. Awai, and T. Itoh, "Transmission line approach of left-handed materials," IEEE AP-S USNC/URSI National Radio Science Meeting Digest, No. 6, 2002.

6. Oliner "A periodic structure negative refractive index medium without resonant elements," IEEE AP-S USNC/URSI National Radio Science Meeting Digest, No. 6, 2002.

7. Grbic and G. V. Eleftheriades, "Periodic analysis of a 2- D negative refractive index transmission line structure," IEEE Trans. Antennas andPr opag., Vol. 51, No. 10, 2604-2611, 2003.
doi:10.1109/TAP.2003.817543

8. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1252-1263, 2004.
doi:10.1109/TMTT.2004.825703

9. Sanada, A.M. Kimura, I. Awai, H. Kubo, C. Caloz, and T. Itoh, "A planar zeroth order resonator antenna using left-handed transmission line," European Microwave Conference Digest, Vol. 2, No. 10, 1341-1344, 2004.

10. Lim, S., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 1, 161-173, 2005.
doi:10.1109/TMTT.2004.839927

11. Antoniades, M. A. and G. V. Eleftheriades, "Compact linear lead/lag metamaterial phase shifters for broadband applications," IEEE Antennas Wireless Propag. Lett., Vol. 2, 103-106, 2003.
doi:10.1109/LAWP.2003.815280

12. Islam, R., F. Elek, and G. V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contradirectional power flow," Electronic Letters, Vol. 40, No. 5, 315-317, 2004.
doi:10.1049/el:20040197

13. Kim, H., A. B. Kozyrev, A. Karbassi, and D. W. van der Weide, "Linear tunable phase shifter using a left-handed transmission line," IEEE Microwave andWir eless Components Letters, Vol. 15, No. 5, 366-368, 2005.
doi:10.1109/LMWC.2005.847715

14. Islam, R. and G. V. Eleftheriades, "Phase-agile branch-line couplers using metamaterial lines," IEEE Microwave andWir eless Components Letters, Vol. 14, 340-342, 2004.
doi:10.1109/LMWC.2004.829277

15. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/lefthanded coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microwave Theory and Techniques, Vol. 52, No. 3, 980-992, 2004.
doi:10.1109/TMTT.2004.823579

16. Antoniades, M. A. and G. V. Eleftheriades, "A broadband Wilkinson balun using microstrip metamaterial lines," IEEE Antennas Wireless Propag. Lett., Vol. 4, 209-212, 2005.
doi:10.1109/LAWP.2005.851005

17. Antoniades, M. A. and G. V. Eleftheriades, "A broadband series power divider using zero-degree metamaterial phase-shifting lines," IEEE Microwave andWir eless Components Letters, Vol. 15, No. 11, 808-810, 2005.
doi:10.1109/LMWC.2005.859007

18. Goussetis, G., A. P. Feresidis, S. Wang, Y. Guo, and J. C. Vardaxoglou, "Planar left-handed artificial metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 7, No. 2, 44, 2005.
doi:10.1088/1464-4258/7/2/006

19. Guo, Y., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Efficient modeling of novel uniplanar left-handed metamaterials," IEEE Transactions on Microwave Theory andT echniques, Vol. 53, No. 4, 1462-1468, 2005.
doi:10.1109/TMTT.2005.845204

20. Hill, R. A. and B. A. Munk, "The effect of perturbating a frequency selective surface and its relation to the design of a dualband surface," IEEE Trans. Antennas Propagat., Vol. 44, No. 3, 368-374, 1996.
doi:10.1109/8.486306

21. Parker, E. A. and J. C. Vardaxoglou, "Plane-wave illumination of concentric-ring frequency-selective surfaces," Proc. IEE- Microwaves, Vol. 132, No. 3, 176-180, 1985.

22. Wu, T. K. and S. W. Lee, "Multiband frequency surface with multiring patch elements," IEEE Trans. Antennas Propagat., Vol. 42, No. 11, 1484-1490, 1994.
doi:10.1109/8.362790

23. High Frequency Structure Simulator (HFSS), ver. 9.0, Ansoft Corporation, 2003., 2003.

24. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

25. Yao, H.-Y., L.-W. Li, Q. Wu, and J. A. Kong, "Macroscopic performance analysis of metamaterials synthesized from microscopic 2-D isotropicc ross split-ring resonator array," Progress In Electromagnetics Research, Vol. 51, 197-219, 2005.
doi:10.2528/PIER04020301

26. Wongkasem, N., A. Akyurlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104