Vol. 76
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-07-11
A Designed Model About Amplification and Compression of Picosecond Pulse Using Cascaded SOA and Nolm Device
By
, Vol. 76, 127-139, 2007
Abstract
A novel technique for the amplification and the compression of an optical pulse is proposed.Based on cascaded a semiconductor optical amplifier (SOA) and a nonlinear optical loop mirror (NOLM), the chirping effect induced by the SOA and the cross phase modulation effect between the signal pulse and control pulse can be utilized to shape the pulse.The picosecond pulse amplification and compression are demonstrated in this paper.A good theoretical model is designed with optimal parameters.Results show that the output signal pulse with high peak power, narrow pulse width, and low pedestal can be obtained using the designed model, which is suited for furture 640 Gbps optical communications.
Citation
Jian-Wei Wu, Xiang-De Tian, and Hai-Bo Bao, "A Designed Model About Amplification and Compression of Picosecond Pulse Using Cascaded SOA and Nolm Device," , Vol. 76, 127-139, 2007.
doi:10.2528/PIER07062003
References

1. O’Mahony, M. J., "Semiconductor laser amplifiers for use in future fiber systems," J. Lightwave Technol., Vol. 6, No. 4, 4531-4544, 1988.
doi:10.1109/50.4035

2. Olsson, N. A., "Lightwave systems with optical amplifiers," J. Lightwave Technolo., Vol. 7, No. 7, 1071-1092, 1989.
doi:10.1109/50.29634

3. Stubkjaer, K. E., et al. "Wavelength conversion devices and techniques," Proc. 22nd Eur. Conf. Optical Communication, No. 9, 33-4, 1996.

4. Jennen, J.G.L.R.C.J.Smets, H.de Waardt, G.N.v an den Hoven, and A.J.Bo ot, "4 × 10 Gbit/s NRZ transmission in the 1310nm window over 80 km of standard signal mode fiber using semiconductor optical amplifiers," Proc. 24th Eur. Conf. Optical Communication, 235-236, 1998.

5. Boscolo, S., S.K.Thritsyn, R.Bham ber, V.K.Mezen tsev, and S.V.Grigory an, "Feasibility of soliton-like DPSK transmission at 40 Gb/s with in-line semiconductor optical amplifier," IEEE Photo. Technol. Lett., Vol. 18, No. 3, 490-492, 2006.
doi:10.1109/LPT.2005.863634

6. Ciaramella, E., A.D'Errico, R.Proietti, and G.Con testabile, "WDM-POLSK transmission systems by using semiconductor optical amplifiers," J. Lightwave Technol., Vol. 24, No. 11, 4039-4046, 2006.
doi:10.1109/JLT.2006.884185

7. Keating, A.J.and D.D.Sampson, "Reduction of excess intensity noise in spectrum-sliced incoherentlight for WDM applications," J. Lightwave Technol., Vol. 15, No. 1, 53-61, 1997.
doi:10.1109/50.552113

8. Han, J. H., J. W. Ko, J. S. Lee, and S. Y. Shin, "0.1-nm narrow bandwidth transmission of a 2.5 Gb/s spectrum-sliced incoherent light channel using an all-optical bandwidth expansion technique at the receiver," IEEE Photon. Technol. Lett., Vol. 10, No. 10, 1501-1503, 1998.
doi:10.1109/68.720308

9. Koyama, F.T. Yamatoya, and K. Iga, "Highly gain-saturated GaInAsP/InP SOA modulator for incoherent spectrum-sliced light sources," Conf. Indium Phosphide and Related Materials, 439-442, 2000.

10. Zhao, M., G.Morthier, and R.Baets, "Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier," IEEE Photon. Technol. Lett., Vol. 14, No. 3, 390-392, 2002.
doi:10.1109/68.986823

11. Healey, P., P.T ownsend, C.F ord, L.Johnston, P.T ownley, I.Lealman, L.Riv ers, S.P errin, and R.Mo ore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett., Vol. 37, No. 19, 1181-1182, 2001.
doi:10.1049/el:20010786

12. Phillips, I.D., P.N.Kean, N.J.Doran, I.Bennion, D.A.P attison, and A.D.Ellis, "Simultaneous clock recovery and data regeneration using a nonlinearoptical loop mirror as an all-optical mixer," Optical Fiber Communication Conf., 273-274, 1997.
doi:10.1109/OFC.1997.719883

13. Lee, J.H., T.Kogure, and D.J.Ric hardson, "Wavelength tunable 10-GHz 3-ps pulse source using a dispersion decreasing fiberbased nonlinear optical loop mirror," IEEE J. Selected Topics in Quantum Electron., Vol. 10, No. 1, 181-185, 2004.
doi:10.1109/JSTQE.2003.822911

14. Yu, J., A.Clausen, H.N.P oulsen, P.Jepp esen, X.Zheng, and C.P eucheret, "40 Gb/s wavelength conversion in a cascade of a SOA and a NOLM and demonstration of extinction ratio improvement," Electron. Lett., Vol. 36, No. 11, 963-964, 2000.
doi:10.1049/el:20000710

15. Wai, P.K.A.and W.Cao, "Simultaneous amplification and compression of ultrashort fundamental solitons in an erbiumdoped nonlinear amplifying fiber loop mirror," IEEE J. Quantum Electron., Vol. 39, No. 4, 555-561, 2003.
doi:10.1109/JQE.2003.809327

16. Willner, A.E. and and W. Shieh, "Optical spectral and power parameters for all-optical wavelength shifting single stage, fanout, and cascadability," J. Lightwave Technol., Vol. 13, No. 5, 771-781, 1995.
doi:10.1109/50.923474

17. Yu, J. and and P. Jeppesen, "Improvement of cascaded semiconductor optical amplifier gates by using holding light injection," J. Lightwave Technol., Vol. 19, No. 5, 614-623, 2001.
doi:10.1109/50.923474

18. Mathlouthi, W., P.Lemieux, M.Salsi, A.V annucci, A.Bononi, and L.A.Rusc h, "Fast and efficient dynamic WDM semiconductor optical amplifier model," J. Lightwave Technol., Vol. 24, No. 11, 4356-4365, 2006.
doi:10.1109/JLT.2006.884217

19. Matsumoto, A., K.Nishim ura, K.Utak a, and M.Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using crossphase modulation," IEEE J. Quantum Electron., Vol. 42, No. 3, 313-323, 2006.
doi:10.1109/JQE.2006.869809

20. Ye, Y., X.Zheng, H.Zhang, Y.Li, and Y.Guo, "Theoretical study on wavelength conversion based on cross phase modulation using semiconductor optical amplifiers," J. Infrared and Millmeter Waves, Vol. 22, No. 12, 1785-1792, 2002.
doi:10.1023/A:1015071416840

21. Agrawal, G.P . and and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifers," IEEE J. Quantum Electron, Vol. 25, No. 11, 832297-2306, 1989.
doi:10.1109/3.42059

22. Agrawal, G. P., Nonlinear Fiber Optics, Academic, New York, 1995.

23. Biswas, A. and and S. Konar, "Theory of dispersion-managed optical solitons," Progress In Electromagnetics Research, Vol. PIER 50, 83-134, 2005.
doi:10.2528/PIER04051301

24. Shwetanshumala, A. Biswas, and S. Konar, "Dynamically stable super Gaussian solitons in semiconductor doped glass fibers," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 901-912, 2006.
doi:10.1163/156939306776149888

25. Crutcher, S., A. Biswas, M. D. Aggarwal, and M. E. Edwards, "“Oscillatory behavior of spatial solitons in two-dimensional waveguides and stationary temporal power law solitons in optical fibers," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 927-939, 2006.
doi:10.1163/156939306776149833

27. Kung, F. and H. T. Chuah, "A finite-difference time-domain (FDTD) software for simulation of printed circuit board (PCB) assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401

28. Gong, Z. Q. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

29. Chen, X., D.Liang, and K.Huang, "Micro wave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," J. of Electromagn. Waves and Appl., Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264