Vol. 78
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-09-21
Time-Domain Theory of Metal Cavity Resonator
By
Progress In Electromagnetics Research, Vol. 78, 219-253, 2008
Abstract
This paper presents a thorough study of the time-domain theory of metal cavity resonators. The completeness of the vector modal functions of a perfectly conducting metal cavity is first proved by symmetric operator theory, and analytic solution for the field distribution inside the cavity excited by an arbitrary source is then obtained in terms of the vector modal functions. The main focus of the present paper is the time-domain theory of a waveguide cavity, for which the excitation problem may be reduced to the solution of a number of modified Klein-Gordon equations. These modified Klein- Gordon equation are then solved by the method of retarded Green's function in order that the causality condition is satisfied. Numerical examples are also presented to demonstrate the time-domain theory. The analysis indicates that the time-domain theory is capable of providing an exact picture for the physical process inside a closed cavity and can overcome some serious problems that may arise in traditional time-harmonic theory due to the lack of causality.
Citation
Geyi Wen, "Time-Domain Theory of Metal Cavity Resonator," Progress In Electromagnetics Research, Vol. 78, 219-253, 2008.
doi:10.2528/PIER07090605
References

1. Kurokawa, K., An Introduction to the Theory of Microwave Circuits, Academic Press, New York, 1969.

2. Goubau, G. (ed.), Electromagnetic Waveguides and Cavities, Pergmon, London, 1961.

3. Collin, R. E., Foundations for Microwave Engineering, 2nd edition, IEEE Press, 2001.

4. Aksoy, S. and O. A. Tretyakov, "The evolution equations in study of the cavity oscillations excited by a digital signal," IEEE Trans. Antennas and Propagation, Vol. 52, No. 1, 263-270, 2004.
doi:10.1109/TAP.2003.822399

5. Bladel, J. V., Electromagnetic Fields, 1st edition, Hemisphere Publishing Corporation, 1985.

6. Geyi, W., "A time-domain theory of waveguide," Progress In Electromagnetics Research, Vol. 59, 267-297, 2006.
doi:10.2528/PIER05102102

7. Zeidler, E., Applied Functional Analysis-Applications to Mathematical Physics, Springer-Verlag, 1995.

8. Byron, F. W. and R. W. Fuller, Mathematics of Classical and Quantum Physics, Addison-Wesley, 1969.

9. Colton, D. and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley, 1983.

10. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill Book Company, Inc., 1961.

11. Grandshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1994.

12. Marcuvitz, N., Waveguide Handbook, McGraw-Hill, 1951.

13. Bopp, III, C. L. and C. M. Butler, "Analysis of transmission of a signal through a complex cylindrical/coaxial cavity by transmission line methods," Progress In Electromagnetics Research, Vol. 56, 33-51, 2006.
doi:10.2528/PIER05041403

14. Mohsen, A. A., E. M. Elkaramany, and F. G. A. El-Hadeed, "Analysis of microwave cavities using LTL-FD method," J. of Electromagn. Waves and Appl., Vol. 19, No. 2, 145-162, 2005.
doi:10.1163/1569393054497320

15. Yang, D., C. Liao, and W. Chen, "Numerical solution on coupling of UWB pulse into a rectangular cavity through slots," J. of Electromagn. Waves and Appl., Vol. 19, No. 12, 1629-1638, 2005.
doi:10.1163/156939305775537375

16. Kim, J. H. and H. J. Eom, "Radiation from multiple annular slots on a circular cylindrical cavity," J. of Electromagn. Waves and Appl., Vol. 21, No. 1, 47-56, 2007.
doi:10.1163/156939307779391713

17. Xiao, J.-K., W.-S. Ji, S. Zhang, and Y. Li, "A field theoretical method for analyzing microwave cavity with arbitrary crosssection," J. of Electromagn. Waves and Appl., Vol. 20, No. 4, 435-446, 2006.
doi:10.1163/156939306776117054

18. Zhang, J.-P. and K.-M. Chen, "Mode matching analysis of the induced electric field in a material sample placed within an energized cylindrical cavity," Progress In Electromagnetics Research, Vol. 28, 295-311, 2000.
doi:10.2528/PIER99090102

19. Van Rienen, U., "Frequency domain analysis of waveguide and resonator with fit on non-orthogonal triangular grids," Progress In Electromagnetics Research, Vol. 32, 357-381, 2001.
doi:10.2528/PIER00080114

20. Wang, C.-F., Y. Xu, and Y.-B. Gan, "3-dimnensional implementation of the field iterative method for cavity modeling," Progress In Electromagnetics Research, Vol. 47, 27-47, 2004.
doi:10.2528/PIER03081401