Vol. 80
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-11-28
Method of Edge Currents for Calculating Mutual External Inductance in a Microstrip Structure
By
Progress In Electromagnetics Research, Vol. 80, 197-224, 2008
Abstract
Mutual external inductance (MEI) associated with fringing magnetic fields in planar transmission lines is a cause of socalled "ground plane noise", which leads to radiation from printed circuit boards in high-speed electronic equipment. Herein, a Method of Edge Currents (MEC) is proposed for calculating the MEI associated with fringing magnetic fields that wrap the ground plane of a microstrip line. This method employs a quasi-magnetostatic approach and direct magnetic field integration, so the resultant MEI is frequencyindependent. It is shown that when infinitely wide ground planes are cut to form ground planes of finite width, the residual surface currents on the tails that are cut off may be redistributed on the edges of the ground planes of finite thickness, forming edge currents. These edge currents shrink to filament currents when the thickness of the ground plane becomes negligible. It is shown that the mutual external inductance is determined by the magnetic flux produced by these edge currents, while the contributions to the magnetic flux by the currents from the signal trace and the finite-size ground plane completely compensate each other. This approach has been applied to estimating the mutual inductance for symmetrical and asymmetrical microstrip lines.
Citation
Marina Koledintseva, James Drewniak, Thomas Van Doren, David Pommerenke, Matteo Cocchini, and David Hockanson, "Method of Edge Currents for Calculating Mutual External Inductance in a Microstrip Structure," Progress In Electromagnetics Research, Vol. 80, 197-224, 2008.
doi:10.2528/PIER07101504
References

1. Wadell, B. C., Transmission Line Design Handbook, Artech House, 1991.

2. Mongia, R., I. Bahl, and P. Bhartia, RF and Microwave Coupled- Line Circuits, Artech House, Norwood, MA, 1999.

3. Edwards, T. C. and M. B. Steer, Foundations of Interconnect and Microstrip Design, 3rd edition, Wiley, 2000.

4. Maloratsky, L. G., Passive RF and Microwave Integrated Circuit Design, Elsevier, 2004.

5. Bahl, I. and P. Bhartia, Microwave Solid State Circuit Design, Wiley, 2nd edition, 2003.

6. Kiang, J. F., S. M. Ali, and J. A. Kong, "Modeling of lossy microstrip lines with finite thickness," Progress In Electromagnetics Research, Vol. 04, 85-117, 1991.

7. Takuma, T., Y. Tajima, T. Ichida, A. Z. Elsherbeni, V. Rodriguez- Pereyra, and C. E. Smith, "The effect of an air gap on the coupling between two planar microstrip lines," Journal of The Franklin Institute, Vol. 333, No. 2, 201-223, 1996.
doi:10.1016/0016-0032(96)00009-9

8. Watanabe, K. and K. Yasumoto, "Coupled-mode analysis of coupled microstrip transmission lines using a singular perturbation technique," Progress In Electromagnetics Research, Vol. 25, 95-110, 2000.
doi:10.2528/PIER99042602

9. Chai, C. C., B. K. Chung, and H. T. Chuah, "Simple time-domain expressions for prediction of cross-talk on coupled microstrip lines," Progress In Electromagnetics Research, Vol. 39, 147-175, 2003.
doi:10.2528/PIER02060902

10. Khalaj-Amirhosseini, M. and A. Cheldavi, "A new twodimensional analysis of microstrip lines using rigorously coupled multi-conductor strips model," J. of Electromagn. Waves and Appl., Vol. 18, No. 6, 809-825, 2004.
doi:10.1163/156939304323105880

11. Khalaj-Amirhosseini, M., "Determination of capacitance and conductance matrices of lossy shielded coupled microstrip transmission lines," Progress In Electromagnetics Research, Vol. 50, 267-278, 2005.
doi:10.2528/PIER04061601

12. Arshadi, A. and A. Cheldavi, "Simple and novel model for edged microstrip line (EMTL)," Progress In Electromagnetics Research, Vol. 65, 247-259, 2006.
doi:10.2528/PIER06100401

13. Nashemi-Nasab and A. Cheldavi "Coupling model of the two orthogonal microstrip lines in two-layer PCB board (Quasi-TEM approach)," Progress In Electromagnetics Research, Vol. 60, 153-163, 2006.
doi:10.2528/PIER05040601

14. Khalaj-Amirhosseini, M. and A. Cheldavi, "Wideband and efficient microstrip interconnects using multi-segmented ground and open traces," Progress In Electromagnetics Research, Vol. 55, 33-46, 2005.
doi:10.2528/PIER05013102

15. Ymeri, H., B. Nauwelaers, K. Maex, and D. D. Roest, "New modeling approach of on-chip interconnects for RF integrated circuits in CMOS technology," Microelectronics International, Vol. 20, No. 3, 41-44, 2003.
doi:10.1108/13565360310487945

16. Van Horck, F. B. M., Electromagnetic Compatibility and Printed Circuit Boards, CIP-Data Library, Technische Universiteit Eindhoven, 1998.

17. Leferink, F., "Inductance calculations: methods and equations," Proc. 1995 IEEE Int. Symp. Electromagnetic Compatibility, 14-18, 1995.

18. Hubing, T. H.T. P. Van Doren, and J. L. Drewniak, "Identifying and quantifying printed circuit board inductance," Proc. 1994 IEEE Int. Symp. Electromagnetic Compatibility, No. 8, 205-208, 1994.

19. Hockanson, D. M., J. L. Drewniak, T. H. Hubing, T. P. Van Doren, F. Sha, and C. W. Lam, "Quantifying EMI resulting from finiteimpedance reference planes," IEEE Trans. Electromagn. Compat., Vol. 39, No. 4, 286-297, 1997.
doi:10.1109/15.649814

20. Ooi, T. H., S. Y. Tan, and H. Li, "Study of radiated emissions from PCB with narrow ground plane," Int. Symp. Electromagnetic Compatibility, No. Paper 20A101, 17-21, 1999.

21. Hockanson, D. M., J. L. Drewniak, T. H. Hubing, T. P. Van Doren, F. Sha, and M. Wilhelm, "Investigation of fundamental EMI source mechanisms driving common-mode radiation from printed circuit boards with attached cables," IEEE Trans. Electromagn. Compat., Vol. 38, No. 4, 557-565, 1996.
doi:10.1109/15.544310

22. Holloway, C. L. and G. A. Hufford, "Internal inductance and conductor loss associated with the ground plane of a microstrip line," IEEE Trans. Electromagn. Compat., Vol. 39, No. 2, 73-77, 1997.
doi:10.1109/15.584929

23. Celozzi, S.G. Panariello, F.Schettino, and L. Verolino, "A general approach for the analysis of finite size PCB ground planes," Proc. 2000 IEEE Int. Symp. Electromagnetic Compatibility, Vol. 1, No. 8, 357-362, 2000.

24. Leone, M., "Design expressions for the trace-to-edge commonmode inductance of a printed circuit board," IEEE Trans. Electromagn. Compat., Vol. 43, No. 4, 667-670, 2001.
doi:10.1109/15.974648

25. Akdagli, A., "An empirical expression for the edge extension in calculating resonant frequency of rectangular microstrip antennas with thin and thick substrates," J. of Electromagn. Waves and Appl., Vol. 21, No. 9, 1247-1255, 2007.

26. Yang, F., V. Demir, D. A. Elsherbeni, and A. Z. Elsherbeni, "Enhancement of printed dipole antennas characteristics using semi-EBG ground plane," J. of Electromagn. Waves and Appl., Vol. 20, No. 8, 993-1006, 2006.
doi:10.1163/156939306776930330

27. Ataeiseresht, R., C. Ghobadi, and J. Nourinia, "A novel analysis of Minkovski fractal microstrip patch antenna," J. of Electromagn. Waves and Appl., Vol. 20, No. 8, 1115-1127, 2006.
doi:10.1163/156939306776930268

28. Shams, K. M. Z., M. Ali, and H.-S. Hwang, "A planar inductively coupled bow-tie slot antenna for WLAN applications," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 861-871, 2006.
doi:10.1163/156939306776149879

29. Kuo, L.-C., H.-R. Chuang, Y.-C. Kan, T.-C. Huang, and C.- H. Ko, "A study of planar printed dipole antennas for wireless communication applications," J. of Electromagn. Waves and Appl., Vol. 21, No. 5, 637-652, 2007.
doi:10.1163/156939307780667355

30. Ren, W., J. Y. Deng, and K. S. Chen, "Compact PCB monopole antenna for UWB applications," J. of Electromagn. Waves and Appl., Vol. 21, No. 10, 1411-1420, 2007.
doi:10.1163/156939307783239401

31. Eldek, A. A., "Numerical analysis of a small ultrawideband microstrip-fed tab monopole antenna," Progress In Electromagnetics Research, Vol. 65, 59-69, 2006.
doi:10.2528/PIER06082305

32. Ali, M. and S. Sanyal, "A numerical investigation of finite ground planes and reflector effects on monopole antenna factor using FDTD technique," J. of Electromagn. Waves and Appl., Vol. 21, No. 10, 1379-1392, 2007.
doi:10.1163/156939307783239410

33. Grover, H. W., Inductance Calculations: Working Formulas and Tables, Dover Publications, New York, NY, 1962.

34. Hoer, C. and C. Love, "Exact inductance calculations for rectangular conductors with applications to more complicated geometries," Journal of Research of the National Bureau of Standards, Vol. 69 C, No. 2, 127-137, 1965.

35. Maxwell, J. C., A Treatise on Electricity and Magnetism, 3rd edition, Oxford University Press, 1892.

36. Kaden, H., Wirbelstroeme und Schirmung in der Nachrichtentechnik. Technische Physik in Einzeldarstellungen Herausgegeben, and von W. Meissner (ed.), 2nd edition, 262-282, 262-282, Springer-Verlag, Berlin, Germany, 1959.

37. Ruehli, A. E., "Inductance calculations in a complex integrated circuit environment," IBM Journal on Research and Development, Vol. 16, No. 5, 470-481, 1972.

38. Carson, J. R., "Wave propagation in overhead wires with ground return," Bell Syst. Techn. Journal, Vol. 5, 539-554, 1926.

39. Kobayashi, M., "Longitudinal and transverse current distributions on microstriplines and their closed-form expression," IEEE Trans. Microwave Theory and Techn., Vol. 33, No. 9, 784-788, 1985.
doi:10.1109/TMTT.1985.1133127

40. Holloway, C. L. and E. F. Kuester, "Closed-form expressions for the current density on the ground plane of a microstrip line, with application to ground plane loss," IEEE Trans. Microwave Theory and Techn., Vol. 43, No. 5, 1204-1207, 1995.
doi:10.1109/22.382088

41. Van Horck, F. B. M., A. P. J. van Deursen, and P. C. T. van der Laan, "Common-mode currents generated by circuits on a PCB — Measurements and transmission-line calculations," IEEE Trans. Electromag. Compat., Vol. 43, No. 4, 608-617, 2001.
doi:10.1109/15.974641

42. Holloway, C. L. and E. F. Kuester, "Closed-form expressions for the current densities on the ground planes of symmetric stripline structures," IEEE Trans. on Electromagn. Compat., Vol. 49, No. 1, 49-57, 2007.
doi:10.1109/TEMC.2006.890219

43. Vaidyanath, A., B. Thoroddsen, J. L. Prince, and A. C. Cangellaris, "Simultaneous switching noise: influence of plane-plane and plane-signal trace coupling," IEEE Trans. on Advanced Packaging, Vol. 18, No. 3, 496-502, 1995.

44. Berg, D.M. Tanaka, Y. Ji, X. Ye, J. L. Drewniak, T. H. Hubing, R. E. DuBroff, and T. P. Van Doren, "FDTD and FEM/MOM modeling of EMI resulting from a trace near a PCB edge," Proc. IEEE Int. Symp. Electromagnetic Compatibility, No. 8, 135-140, 2000.

45. Watanabe, T.O. Wada, Y. Toyota, and R. Koga, "Estimation of common-mode EMI caused by a signal line in the vicinity of ground edge on a PCB," Proc. of IEEE Int. Symp. Electromagnetic Compatibility, Vol. 1, No. 8, 113-118, 2002.