Vol. 80
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-12-20
Photonic Crystal Narrow Filters with Negative Refractive Index Structural Defects
By
Progress In Electromagnetics Research, Vol. 80, 421-430, 2008
Abstract
This paper presents a proposal of taking the left-handed material as the structural defects of one-dimensional photonic crystals and uses the transfer matrix method to analyze the band-gap of that structure. The simulation result shows that the structure investigated can be considered as a narrow pass band optical filter. By tuning the refractive index of the left-handed material, the ideal transmission rate in the pass band is as higher as 99.99%, while in the band-gap is lower than 0.01%. In addition, we show that the bandwidth can be increased by reducing the cycle number of the photonic crystals.
Citation
Zhuo-Yuan Wang, Xiao-Ming Cheng, Xiao-Qi He, Sheng-Li Fan, and Wen-Zhe Yan, "Photonic Crystal Narrow Filters with Negative Refractive Index Structural Defects," Progress In Electromagnetics Research, Vol. 80, 421-430, 2008.
doi:10.2528/PIER07121002
References

1. Yabolnovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric super-lattices," Phys. Rev. Lett., Vol. 58, No. 20, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Dmitriev, V., "2D Magnetic photonic crystals with square lattice-group theoretical tandpoint," Progress In Electromagnetics Research, Vol. 58, 71-100, 2006.
doi:10.2528/PIER05061701

4. Sanjeev, K. S. and S. P. Ojha, "Enhancement of omnidirectional reflection bands in one-dimensional photonic crystals with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
doi:10.2528/PIER06061602

5. Ibrahim, A. B. M. A. and P. K. Choudhury, "Relative power distributions in omniguiding photonic band-gap fibers," Progress In Electromagnetics Research, Vol. 72, 269-278, 2007.
doi:10.2528/PIER07031406

6. Noda, S., A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature, Vol. 407, 608-610, 2000.
doi:10.1038/35036532

7. Massaoudi, S., A. de Lustrac, and I. Huynen, "Properties of metallic photonic band gap material with defect at microwave frequencies: Calculation and experimental verification," J. of Electromagn. Waves and Appl., Vol. 20, No. 14, 1967-1980, 2006.
doi:10.1163/156939306779322710

8. Zheng, Q. R., Y. Q. Fu, and N. C. Yuan, "Characteristics of planar PBG structures with a cover layer," J. of Electromagn. Waves and Appl., Vol. 20, No. 11, 1439-1453, 2006.
doi:10.1163/156939306779274264

9. Mandal, B. and A. R. Chowdhury, "Spatial soliton scattering in a quasi phase matched quadratic media in presence of cubic nonlinearity," J. of Electromagn. Waves and Appl., Vol. 21, No. 1, 123-135, 2007.
doi:10.1163/156939307779391704

10. Zheng, Q. R., B. Q. Lin, and N. C. Yuan, "Characteristics and applications of a novel compact spiral electromagnetic band-gap (EBG) structure," J. of Electromagn. Waves and Appl., Vol. 21, No. 2, 199-213, 2007.
doi:10.1163/156939307779378844

11. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

12. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4795, 1996.
doi:10.1103/PhysRevLett.76.4773

13. Pendry, J. B., A. J. Holden, and D. J. Robbins, "Magnetismfrom conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Tech., Vol. 47, No. 11, 2075-2096, 1999.
doi:10.1109/22.798002

14. Smith, D. R., W. J. Padilla, and D. C. Vier, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

15. Wang, Z. J. and J. F. Dong, "Analysis of guided modes in asymmetric left-handed slab waveguides," Progress In Electromagnetics Research, Vol. 62, 203-215, 2006.
doi:10.2528/PIER06021802

16. Kong, J. A., "Electromagnetic waves in stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101

17. Chen, H. S., B. I.Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," J. of Electromagn. Waves and Appl., Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585

18. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," J. of Electromagn. Waves and Appl., Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

19. Lu, J., B. I. Wu, J. A. Kong, and M. Chen, "Guided modes with a linearly varying transverse field inside a left-handed dielectric slab," J. of Electromagn. Waves and Appl., Vol. 20, No. 5, 689-697, 2006.
doi:10.1163/156939306776137728

20. Guo, Y. and R. M. Xu, "Planar metamaterials supporting multiple left-handed modes," Progress In Electromagnetics Research, Vol. 66, 239-251, 2006.
doi:10.2528/PIER06113001

21. Chen, H. S., B. I. Wu, L. X. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett., Vol. 89, 2006.

22. Chen, H., L. Ran, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Crankled S-ring resonator with small electrical size," Progress In Electromagnetics Research, Vol. 66, 179-190, 2006.
doi:10.2528/PIER06112003

23. Ding, W., L. Chen, and C. H. Liang, "Characteristics of electromagnetic wave propagation in biaxial anisotropic left-handed materials," Progress In Electromagnetics Research, Vol. 70, 37-52, 2007.
doi:10.2528/PIER07011001

24. Yao, M., C.H. Liang, X. W. Dai, and W. Zhao, "A new structure for localizing electromagnetic energy using two semi-infinite lefthanded- medium slabs," Progress In Electromagnetics Research, Vol. 75, 295-302, 2007.
doi:10.2528/PIER07053101

25. Fang, Y. D., Y. G. Shen, and G. H. Lin, "Photo wave propagation in one dimension random photonic crystal," Laser Technology, Vol. 28, No. 2, 153-155, 2004.

26. Katsidis, C. C. and D. I. Siapkas, "General transfer-matrix method for optical multilayer systems with coherent partially coherent, and incoherent interference," Appl. Opt., Vol. 41, 3978-3987, 2002.
doi:10.1364/AO.41.003978

27. Zhang, G. M., J. C. Peng, and Z. J. Jian, "The transfer matrix for the bilayer structure composed of left-handed and right-handed materials," J. of Func. Mat., Vol. 2, No. 37, 309-311, 2006.

28. Yeh, P., A. Yariv, and C. S. Hong, "Electromagnetic propagation in periodic stratified media—I. General theory," J. Opt Soc. Am., Vol. 67, No. 4, 423-438, 1997.

29. Wang, Z. Y., T. T. Shao, and Y. G. Wang, "The improve of analyzing of 1-D photonic crystal by transfer matrix method," Bul. of Sci. and Tech., Vol. 23, No. 6, 774-777, 2007.