Vol. 83

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-05-08

A New Link-Level Simulation Procedure of Wideband MIMO Radio Channel for Performance Evaluation of Indoor WLANs

By Mahdi Roozbahani, Esrafil Jedari, and Amir Shishegar
Progress In Electromagnetics Research, Vol. 83, 13-24, 2008
doi:10.2528/PIER08040502

Abstract

Inspired by the requirement of proper link simulation methods in performance analysis of communication systems, we present in this paper a recipe for channel implementation in simulation environments. Our focus here is the indoor applications of wireless local-area networks (WLANs). Specifically, we describe a procedure that beginning with statistical description of the channel impulse response leads to an efficient multi-input multi-output (MIMO) channel simulating method for arbitrary antenna configurations at both ends. A sample set of distributions for model parameters are also provided at the 5-GHz band, which is the operating frequency band of IEEE 802.11a, HIPERLAN/2, and the emerging IEEE 802.11n standards, and the corresponding software implementation of the simulator is addressed for public use.

Citation


Mahdi Roozbahani, Esrafil Jedari, and Amir Shishegar, "A New Link-Level Simulation Procedure of Wideband MIMO Radio Channel for Performance Evaluation of Indoor WLANs ," Progress In Electromagnetics Research, Vol. 83, 13-24, 2008.
doi:10.2528/PIER08040502
http://www.jpier.org/PIER/pier.php?paper=08040502

References


    1. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling on capacity of mimo wireless channels in high snr scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
    doi:10.2528/PIER06072803

    2. Abouda, A. A., H. M. El-Sallabi, and S. G. Haggman, "Effect of antenna array geometry and ula azimuthal orientation on mimo channel properties in urban city street grid," Progress In Electromagnetics Research, Vol. 64, 257-278, 2006.
    doi:10.2528/PIER06050801

    3. Noori, N. and H. Oraizi, "Evaluation of mimo channel capacity in indoor environments using vector parabolic equation method," Progress In Electromagnetics Research B, Vol. 4, 13-25, 2008.

    4. Hu, C.-F., J.-D. Xu, N. Li, and L. Zhang, "Indoor accurate RCS measurement technique on UHF band," Progress In Electromagnetics Research, Vol. 81, 279-289, 2008.
    doi:10.2528/PIER08011402

    5. Xiao, S., J. Chen, B.-Z. Wang, and X.-F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultra-wideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.
    doi:10.2528/PIER07082501

    6. Martinez, D., F. Las-Heras, and R. G. Ayestaran, "Fast methods for evaluating the electric field level in 2D-indoor environments," Progress In Electromagnetics Research, Vol. 69, 247-255, 2007.
    doi:10.2528/PIER06122105

    7. Yarkoni, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.
    doi:10.2528/PIER05090801

    8. Talbi, L. and G. Y. Delisle, "Finite difference time domain characterization of indoor radio propagation," Progress In Electromagnetics Research, Vol. 12, 251-275, 1996.

    9. Xu, H., D. Chizhik, H. Huang, and R. Valenzuela, "A generalized space-time multiple-input multiple-output (MIMO) channel model," IEEE Trans. Wireless Commun., Vol. 3, 966-975, 2004.
    doi:10.1109/TWC.2004.827736

    10. Weichselberger, W., M. Herdin, H. Ozcelik, and E. Bonek, "A stochastic MIMO channel model with joint correlation of both link ends," IEEE Trans. Wireless Commun., Vol. 5, 90-100, 2006.
    doi:10.1109/TWC.2006.1576533

    11. IEEE 802.11-03/940r4: TGn Channel Models, IEEE, [Online], Available: IEEE, , ftp://ieee:wireless@ftp.802wirelessworld.com/11/03/11-03-0940-02-000n-tgn-channel-models.doc.

    12. Medbo, J. and P. Schramm, "Channel models for hiperlan/2 in different indoor scenarios," BRAN 3ERJ085B, 1998.

    13. Steinbauer, M., et al., "The double-directional radio channel," IEEE Antennas Propagat. Mag., Vol. 43, 51-63, 2001.
    doi:10.1109/74.951559

    14. Saleh, A. and R. Valenzuela, "A statistical model for indoor multipath propagation," IEEE J. Select. Areas Commun., Vol. 5, 128-137, 1987.
    doi:10.1109/JSAC.1987.1146527

    15. Spencer, Q. H., et al., "Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel," IEEE J. Select. Areas Commun., Vol. 18, 347-359, 2000.
    doi:10.1109/49.840194

    16. Chong, C. C., et al., "A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems," IEEE J. Select. Areas Commun., Vol. 21, 139-150, 2003.
    doi:10.1109/JSAC.2002.807347

    17. Zwick, T., C. Fischer, D. Didascalou, and W. Wiesbeck, "A stochastic spatial channel model based on wave-propagation modeling," IEEE J. Select. Areas Commun., Vol. 18, 6-15, 2000.
    doi:10.1109/49.821698

    18. Wallace, J. W., et al., "Modeling the indoor MIMO wireless channel," IEEE Trans. Antennas Propagation, Vol. 50, 591-599, 2002.
    doi:10.1109/TAP.2002.1011224

    19. Enayati, A. R., et al., "Reduced complexity maximum likelihood multiuser detection for OFDM-based IEEE 802.11a WLANs utilizing post-FFT mode," Proceedings of the IEEE PIMRC'06, 2006.