Vol. 86

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-10-07

A Symmetry-Based Formalism for the Electrodynamics of Nanotubes

By Said Mikki and Ahmed Kishk
Progress In Electromagnetics Research, Vol. 86, 111-134, 2008
doi:10.2528/PIER08081704

Abstract

In this paper, a general symmetry-based approach to the electrodynamics of a class of low-dimensional structures, carbon nanotubes, is proposed. The contribution of the microscopic configuration is handled using the symmetry group of the structure under consideration. An explicit form of the electromagnetic field is derived starting from a general nonlocal linear susceptibility model expressed as a low-dimensional phenomenological response function. The general form of the field obtained is used to devise new theoretical insights by providing a framework for the computation of the nanotube Green's functions.

Citation


Said Mikki and Ahmed Kishk, "A Symmetry-Based Formalism for the Electrodynamics of Nanotubes," Progress In Electromagnetics Research, Vol. 86, 111-134, 2008.
doi:10.2528/PIER08081704
http://www.jpier.org/PIER/pier.php?paper=08081704

References


    1. Poole, C. P. and F. J. Owens, Introduction to Nanotechnology, Wiley-Interscience, 2003.

    2. Kong, F., K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
    doi:10.2528/PIER07070203

    3. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in GaN/ALGaN superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
    doi:10.2528/PIER08011102

    4. Iijima, S., "Helical microtabules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.
    doi:10.1038/354056a0

    5. Anantram, M. and F. Leonard, "Physics of carbon nanotube electronic devices," Reports on Progress in Physics, Vol. 69, 507-561, February 2006.
    doi:10.1088/0034-4885/69/3/R01

    6. Smalley, R. E., M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer, 2001.

    7. Mikki, S. M. and A. A. Kishk, "Exact derivation of the dyadic Green's functions of carbon nanotubes using microscopic theory," International IEEE APS Symposium, Hawaii, June 2007.

    8. Wooten, F., Optical Properties of Solids, Academic Press, 1972.

    9. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999.

    10. Chew, W. C., Waves and Fields in Inhomogeneous Media, re-print Ed., IEEE Press, 1999.

    11. Balanis, C., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.

    12. Stratton, J., Electromagnetic Theory, McGraw-Hill, 1941.

    13. Toyozawa, Y., Optical Processes in Solids, Cambridge University Press, 2003.

    14. Brillouin, L., Wave Propagation in Periodic Structures, 1956.

    15. Born, M. and K. Haung, Dynamical Theory of Crystal Lattices, 1st Ed., Oxford University Press, London, 1954.

    16. Grosso, G. and G. Parravicini, Solid-State Physics, Academic Press, 2000.

    17. White, C. T., D. H. Robertson, and J. W. Mintmire, "Helical and rotational symmetries of nanoscale graphitic tubules," Phys. Rev. B, Vol. 47, No. 9, 5485-5488, March 1993.
    doi:10.1103/PhysRevB.47.5485

    18. Damnjanovic, M., I. Milosevic, T. Vukovic, and R. Sredanovic, "Full-symmetry, optical activity, and potentials of single-wall and multi-wall nanotubes," Phys. Rev. B, Vol. 60, No. 4, 2728-2739, July 1999.
    doi:10.1103/PhysRevB.60.2728

    19. Damnjanovic, M., I. Milosevic, T. Vukovic, and R. Sredanovic, "Symmetry and lattices of single-wall nanotubes," J. Phys. A, Vol. 32, 4097-4104, 1999.
    doi:10.1088/0305-4470/32/22/310

    20. Cohen-Tannoudjii, C., J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics, Wiley, 1989.

    21. Pekar, S. I., "Theory of electromagnetic waves in a crystal in which excitons are produced," Sov. Phys. JETP, Vol. 6, 785, 1957.

    22. Agranovich, V. M. and V. L Ginsburg, Crystal Optics and Spatial Dispersion, and Excitons, Springer, 1984.

    23. Halevi, P. (ed.), Spatial Dispersion in Solids and Plasmas, Springer, 1992.

    24. Cho, K., "Nonlocal theory of radiation-matter interaction: Boundary-condition-less treatment of Maxwell equations," Prog. Theor. Phys. Suppl., No. 106, 225-233, 1991.
    doi:10.1143/PTPS.106.225

    25. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965.