Vol. 91

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-03-10

A Simple Approach for Evaluating the Reciprocity of Materials Without Using Any Calibration Standard

By Ugur Cem Hasar and O. Simsek
Progress In Electromagnetics Research, Vol. 91, 139-152, 2009
doi:10.2528/PIER09012905

Abstract

A simple approach for evaluation of the reciprocity of materials using raw scattering parameter measurements is proposed. This approach not only reduces the overall measurement time but also eliminates the need for calibrating the measurement system since it uses calibration-independent measurements. We have derived a metric function for reflecting and nonreflecting cells, which are used to house the sample under test. This function does not depend on electrical properties of materials and their lengths, and whether the cell is reflecting. We have also investigated the effects of the sample length and air pockets between sample external surfaces and cell inner walls on the performance of the evaluation of sample reciprocity.

Citation


Ugur Cem Hasar and O. Simsek, "A Simple Approach for Evaluating the Reciprocity of Materials Without Using Any Calibration Standard," Progress In Electromagnetics Research, Vol. 91, 139-152, 2009.
doi:10.2528/PIER09012905
http://www.jpier.org/PIER/pier.php?paper=09012905

References


    1. Chen, L. F., et al., Microwave Electronics: Measurement and Materials Characterization, JohnWiley & Sons, West Sussex, England, 2004.

    2. Nyfors, E., "Industrial microwave sensors — A review," Subsurface Sensing Tech. and Appl., Vol. 1, 23-43, 2000.
    doi:10.1023/A:1010118609079

    3. Hebeish, A. A., et al., "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
    doi:10.2528/PIERB07121702

    4. Janezic, M. D. and J. A. Jargon, "Complex permittivity determination from propagation constant measurements," IEEE Microwave Guided Wave Lett., Vol. 9, 76-78, 1999.
    doi:10.1109/75.755052

    5. Huynen, I., C. Steukers, and F. Duhamel, "A wideband line-line dielectrometric method for liquids, soils, and planar substrates ," IEEE Trans. Instrum. Meas., Vol. 50, 1343-1348, 2001.
    doi:10.1109/19.963208

    6. Wan, C., B. Nauwelaers, W. De Raedt, and M. Van Rossum, "Two new measurement methods for explicit determination of complex permittivity," IEEE Trans. Microwave Theory Tech., Vol. 46, 1614-1619, 1998.
    doi:10.1109/22.734537

    7. Baek, K. H., H. Y. Sung, and W. S. Park, "A 3-position transmission/reflection method for measuring the permittivity of low loss materials," IEEE Microwave Guided Wave Lett., Vol. 5, 3-5, 1995.
    doi:10.1109/75.382378

    8. Hasar, U. C., "Calibration-independent method for complex permittivity determination of liquid and granular materials," Electron. Lett., Vol. 44, 585-586, 2008.
    doi:10.1049/el:20080242

    9. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid dielectric materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, 788-790, 2008.
    doi:10.1109/LMWC.2008.2007699

    10. Hasar, U. C. and O. Simsek, "A position-insensitive and nonsingular method for dielectric measurements of solid materials," J. Phys. D: Applied Phys., 2009.

    11. Hasar, U. C., "A self-checking technique for materials characterization using calibration-independent measurements of reflecting lines," Microwave Opt. Technol. Lett., Vol. 51, 129-132, 2009.
    doi:10.1002/mop.23978

    12. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid acrowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
    doi:10.2528/PIERL08091402

    13. He, X., Z. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress in Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
    doi:10.2528/PIERL08011501

    14. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. Microw. Theory Tech., Vol. 13, 194-202, 1965.
    doi:10.1109/TMTT.1965.1125964

    15. Wan, C., B. Nauwelaers, W. De Raedt, and M. Van Rossum, "Complex permittivity measurement method based on asymmetry of reciprocal two-ports," Electron. Lett., Vol. 32, 1497, 1996.
    doi:10.1049/el:19960957

    16. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New Jersey, NJ, 1989.

    17. Lee, M. Q. and S. Nam, "An accurate broadband measurement of substrate dielectric constant," IEEE Microwave Guided Wave Lett., Vol. 6, 168-170, 1996.
    doi:10.1109/75.481091

    18. Reynoso-Hernandez, J. A., et al., "An improved method for estimation of the wave propagation constant γ in broadband uniform millimeter wave transmission line," Microwave Opt. Technol. Lett., Vol. 22, 268-271, 1999.
    doi:10.1002/(SICI)1098-2760(19990820)22:4<268::AID-MOP16>3.0.CO;2-6

    19. Arfken, G. B. and H. J. Weber, Mathematical Methods for Physicists, Elsevier, New York, NY, 2005.

    20. Challa, R. K., D. Kajfez, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with as non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress in Electromagnetics Research B, Vol. 2, 1-13, 2008.
    doi:10.2528/PIERB07102001

    21. Khalaj-Amirhosseini, K., "Closed form solutions for nonuniform transmission lines," Progress in Electromagnetics Research B, Vol. 2, 243-258, 2008.
    doi:10.2528/PIERB07111502

    22. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Techol., Vol. 19, 055706-055715, 2008.
    doi:10.1088/0957-0233/19/5/055706

    23. Hasar, U. C., "A fast and accurate amplitude-only transmissionreflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, 2129-2135, 2008.
    doi:10.1109/TMTT.2008.2002229

    24. Nishikata, A., "A swept-frequency measurement of complex permittivity and complex permeability of a columnar specimen inserted in a rectangular waveguide," IEEE Trans. Microw. Theory Tech., Vol. 55, 1554-1567, 2007.
    doi:10.1109/TMTT.2007.900340

    25. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," NIST Project, Boulder, CO, Tech. Note 1355, 1992.

    26. Somlo, P. I., "A convenient self-checking method for the automated microwave measurement of μ and ε," IEEE Trans. Instrum. Meas., Vol. 42, 213-216, 1993.
    doi:10.1109/19.278551

    27. Buyukozturk, O., T. Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, 349-359, 2006.
    doi:10.1016/j.cemconcomp.2006.02.004

    28. Hasar, U. C., "Free-space nondestructive characterization of young mortar samples," J. Mater. Civ. Eng., Vol. 19, 674-682, 2007.
    doi:10.1061/(ASCE)0899-1561(2007)19:8(674)

    29. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Hoboken, NJ, 2005.

    30. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
    doi:10.2528/PIERB08072005