Vol. 93
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-06-10
The Combination of Bcgstab with Multifrontal Algorithm to Solve Febi-MLFMA Linear Systems Arising from Inhomogeneous Electromagnetic Scattering Problems
By
Progress In Electromagnetics Research, Vol. 93, 91-105, 2009
Abstract
The hybrid finite-element/boundary-integral method (FEBI) combined with the multilevel fast multipole algorithm (MLFMA) has been applied to model the three-dimensional scattering problems of inhomogeneous media. The stabilized Bi-conjugate gradient (BCGATAB) iterative solver based on the inner-looking algorithm is proposed to solve the final FEBI linear system, and the multifrontal algorithm combined with the approximate minimal degree permutation (AMD) is used for the LU decomposition of the FEM matrix. The accuracy and efficiency of the combined algorithm has been validated in the final of the paper. Numerical results show that the proposed method can greatly improve the efficiency of FEBI for scattering problems of inhomogeneous media.
Citation
Xue Wei Ping, Tie-Jun Cui, and Wei Bing Lu, "The Combination of Bcgstab with Multifrontal Algorithm to Solve Febi-MLFMA Linear Systems Arising from Inhomogeneous Electromagnetic Scattering Problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
doi:10.2528/PIER09050604
References

1. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., New York, 2002.

2. Bedrosian, G., "High-performance computing for finite element methods in low-frequency electromagnetics," Progress In Electromagnetics Research, Vol. 07, 57-110, 1993.

3. Jiao, D. and S. Chakravarty, "A layered finite element method for electromagnetic analysis of large-scale high-frequency integrated circuits," IEEE Trans. Antennas Propagat., Vol. 55, No. 2, 422-432, 2007.
doi:10.1109/TAP.2006.889847

4. Zhou, X. and G. W. Pan, "Application of physical spline finite element method (PSFEM) to fullwave analysis of waveguides," Progress In Electromagnetics Research, Vol. 60, 19-41, 2006.
doi:10.2528/PIER05081102

5. Mittra, R. and O. Ramahi, "Absorbing boundary conditions for the direct solution of partial differential equations arising in elec-tromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 02, 133-173, 1990.

6. Hadi, M. F., "Wide-angle absorbing boundary conditions for low and high-order FDTD algorithms," Applied Computational Electromagnetics Society Journal, Vol. 24, No. 1, 9-15, 2009.

7. Basu, U., "Explicit finite element perfectly matched layer for transient three-dimensional elastic waves," Intertional Journal for Numerical Methods in Engineering, Vol. 77, No. 2, 151-176, 2009.
doi:10.1002/nme.2397

8. Movahhedi, M. and A. Abdipour, "Complex frequency shifted-perfectly matched layer for the finite-element time-domain method," Eu-International Journal of Electronics and Communications, Vol. 63, No. 1, 72-77, 2009.
doi:10.1016/j.aeue.2007.10.001

9. Yuan, W. and E. P. Li, "Numerical dispersion and impedance analysis for 3D perfectly matched layers used for truncation of the fdtd computations," Progress In Electromagnetics Research, Vol. 47, 193-212, 2004.
doi:10.2528/PIER03121002

10. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

11. Harrington, R. F., Field Computation by Moment Methods, Krieger Publishing Company, Malabar, Florida, 1983.

12. Collino, F., F. Millot, and S. Pernet, "Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
doi:10.2528/PIER07103105

13. Zhang, Y., J. Porter, M. Taylor, and T. K. Sarkar, "Solving challenging electromagnetic problems using MoM and a parallel out-of-core solver on high performance clusters," IEEE Antennas and Propagation Society International Symposium, 2858-2861, 2008.

14. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microwave and Optical Tech. Lett., Vol. 10, 14-19, 1995.
doi:10.1002/mop.4650100107

15. Cui, T. J., W. C. Chew, G. Chen, and J. M. Song, "Efficient MLFMA, RPFMA, and FAFFA algorithms for EM scattering by very large structures," IEEE Trans. Antennas Propagat., Vol. 52, 759-770, 2004.
doi:10.1109/TAP.2004.825491

16. Wang, C. F., L. W. Li, P. S. Kooi, and M. S. Leong, "Efficient capacitance computation for three-dimensional structures based on adaptive integral method," Progress In Electromagnetics Research, Vol. 30, 33-46, 2001.
doi:10.2528/PIER00031302

17. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1995.

18. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 12, 631-644, 1992.

19. Zunoubi, M. R. and A. A. Kishk, "A combined Bi-Cgstab (1) and wavelet transform method for EM problems using method of moments," Progress In Electromagnetics Research, Vol. 52, 205-224, 2005.
doi:10.2528/PIER04080903

20. Sheng, X. Q. and Z. Peng, "Further cognition of hybrid FE/BI/MLFMA-investigation of the hybrid computing technique for scattering by large complex targets," Acta Electronica Sinica, Vol. 34, 93-98, 2006 (in Chinese).

21. Liu, J. and J. M. Jin, "A highly effective preconditioner for solving the finite element-boundary integral matrix equation of 3-D scattering," IEEE Trans. Antennas Propagat., Vol. 50, No. 9, 1212-1221, 2002.
doi:10.1109/TAP.2002.801377

22. Irons, B. M., "A frontal method solution program for finite element analysis," Intertional Journal for Numerical Methods in Engineering, Vol. 2, 5-32, 1970.
doi:10.1002/nme.1620020104

23. Rozenfeld, P., "The electromagnetic theory of three-dimensional inhomogeneous lenses," IEEE Trans. Antennas Propgat., Vol. 24, 365-370, 1976.
doi:10.1109/TAP.1976.1141337

24. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 32, No. 8, 797-806, 1984.
doi:10.1109/TAP.1984.1143430