Vol. 93
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-01
An Efficient Twofold Iterative Algorithm of FE-BI-MLFMA Using Multilevel Inverse-Based Ilu Preconditioning
By
Progress In Electromagnetics Research, Vol. 93, 369-384, 2009
Abstract
It is known that the conventional algorithm (CA) of hybrid finite element-boundary integral-multilevel fast multipole algorithm (FE-BI-MLFMA) usually suffers the problem of slow convergence, and the decomposition algorithm (DA) is limited by large memory requirement. An efficient twofold iterative algorithm (TIA) of FE-BI-MLFMA is presented using the multilevel inverse-based incomplete LU (MIB-ILU) preconditioning in this paper. It is shown that this TIA can offer a good balance of efficiency between CPU time and memory requirement. The tree-cotree splitting technique is then employed in the TIA to further improve its efficiency and robustness. A variety of numerical experiments are performed in this paper, demonstrating that the TIA exhibits superior efficiency in memory and CPU time to DA and CA, and greatly improves the computing capability of FE-BI-MLFMA.
Citation
Zhen Peng, Xin-Qing Sheng, and Fei Yin, "An Efficient Twofold Iterative Algorithm of FE-BI-MLFMA Using Multilevel Inverse-Based Ilu Preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.
doi:10.2528/PIER09060305
References

1. Yuan, X., "Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 8, 1053-1058, 1990.
doi:10.1109/22.57330

2. Angelini, J. J., C. Soize, and P. Soudais, "Hybrid numerical method for harmonic 3-D Maxwell equations: Scattering by a mixed conducting and inhomogeneous anisotropic dielectric medium," IEEE Trans. Antennas Propagat., Vol. 41, No. 1, 66-76, 1993.
doi:10.1109/8.210117

3. Antilla, G. E. and N. G. Alexopoulos, "Scattering from complex three-dimensional geometries by a curvilinear hybrid finite-element-integral equation approach," J. Opt. Soc. Amer. A, Vol. 11, No. 4, 1445-1457, 1994.
doi:10.1364/JOSAA.11.001445

4. Boyes, W. E. and A. A. Seidl, "A hybrid finite element method for 3-D scattering using nodal and edge elements," IEEE Trans. Antennas Propagat., Vol. 42, No. 10, 1436-1442, 1994.
doi:10.1109/8.320751

5. Rogier, H., F. Olyslager, and D. De Zutter, "A hybrid finite element integral equation approach for the eigenmode analysis of complex anisotropic dielectric waveguides," Radio Science, Vol. 31, No. 4, 999-1010, 1996.
doi:10.1029/96RS01052

6. Eibert, T. and V. Hansen, "Calculation of unbounded field problems in free space by a 3D FEM/BEM-hybrid approach,", Vol. 10, No. 1, 61-78, 1996.

7. Cwik, T., C. Zuffada, and V. Jamnejad, "Modeling three-dimensional scatterers using a coupled finite element --- Integral equation formulation," IEEE Trans. Antennas Propagat., Vol. 44, No. 4, 453-459, 1996.
doi:10.1109/8.489296

8. Bindiganavale, S. S. and J. L. Volakis, "A hybrid FE-FMM Technique for electromagnetic scattering," IEEE Trans. Antennas Propagat., Vol. 45, No. 1, 180-181, 1997.
doi:10.1109/8.554258

9. Soudais, P., H. Steve, and F. Dubois, "Scattering from several test-objects computed by 3-D hybrid IE/PDE methods," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 646-653, 1999.
doi:10.1109/8.768803

10. Sheng, X. Q., J. M. Song, C. C. Lu, and W. C. Chew, "On the formulation of hybrid finite-element and boundary-integral method for 3D scattering," IEEE Trans. Antennas Propagat., Vol. 46, No. 3, 303-311, 1998.
doi:10.1109/8.662648

11. Rogier, H., B. Baekelandt, F. Olyslager, and D. De Zutter, "Application of the FE-BIE technique to problems relevant to electromagnetic compatibility: Optimal choice of mechanisms to take into account periodicity," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 3, 246-256, 2000.
doi:10.1109/15.865331

12. Sheng, X. Q. and E. K. N. Yung, "Implementation and experiments of a hybrid algorithm of the MLFMA-enhanced FE-BI method for open-region inhomogeneous electromagnetic problems," IEEE Trans. Antennas Propagat., Vol. 50, No. 2, 163-167, 2002.
doi:10.1109/8.997987

13. Liu, J. and J. M. Jin, "A highly effective preconditioner for solving the finite element-boundary integral matrix equation for 3-D scattering," IEEE Trans. Antennas Propagat., Vol. 50, No. 9, 1212-1221, 2002.
doi:10.1109/TAP.2002.801377

14. Vouvakis, M. N., S. C. Lee, K. Z. Zhao, and J. F. Lee, "A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems," IEEE Trans. Antennas Propagat., Vol. 52, No. 11, 3060-3070, 2004.
doi:10.1109/TAP.2004.837525

15. Duff, I. S. and J. K. Reid, "The multifrontal solution of indefinite sparse symmetric linear system," ACM Trans. on Mathematical Software, Vol. 9, No. 3, 302-325, 1983.
doi:10.1145/356044.356047

16. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company Press, Boston, 1996.

17. Saad, Y. and J. Zhang, "BILUM: Block versions of multielimination and multi-level ILU preconditioner for general sparse linear systems," SIAM J. Sci. Comput., Vol. 20, 2103-2121, 1999.
doi:10.1137/S106482759732753X

18. Zhang, J., "A grid based multilevel incomplete LU factorization preconditioning technique for general sparse matrices," Applied Mathematics and Computation, Vol. 124, No. 1, 95-115, 2001.
doi:10.1016/S0096-3003(00)00081-3

19. Bollhofer, M. and Y. Saad, "On the relations between ILUs and factored approximate inverses," SIAM J. Matrix Anal. Appl., Vol. 24, 219-237, 2002.
doi:10.1137/S0895479800372110

20. Li, N., Y. Saad, and E. Chow, "Crout versions of ILU for general sparse matrices," SIAM J. Sci. Comput., Vol. 25, No. 2, 716-728, 2003.
doi:10.1137/S1064827502405094

21. Bollhofer, M., "A robust and e±cient ILU that incorporates the growth of the inverse triangular factors," SIAM J. Sci. Comput., Vol. 25, No. 1, 86-103, 2003.
doi:10.1137/S1064827502403411

22. Bollhofer, M. and Y. Saad, "Multilevel preconditioners constructed from inverse-based ILUs,", Vol. 27, No. 5, 1627-1650, 2006.
doi:10.1137/040608374

23. Albanese, R. and G. Rubinacci, "Solution of three dimensional eddy current problems by integral and differential methods," IEEE Trans. Magn., Vol. 24, No. 1, 98-101, 1988.
doi:10.1109/20.43865

24. Lee, S. C., J.-F. Lee, and R. Lee, "Hierarchical vector finite elements for analyzing wave guiding structures," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 8, 1897-1905, 2003.
doi:10.1109/TMTT.2003.815263

25. Lee, J. F. and D. K. Sun, "p-Type multiplicative Schwarz (pMUS) method with vector finite elements for modeling three-dimensional waveguide discontinuities," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 864-870.
doi:10.1109/TMTT.2004.823554

26. Duff, I. S. and S. Pralet, "Strategies for scaling and pivoting for sparse symmetric indefinite problems," SIAM J. Matrix Anal. Appl., Vol. 27, No. 2, 313-340, 2005.
doi:10.1137/04061043X

27. Karypis, G. and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular graphs," SIAM J. Sci. Comput., Vol. 20, No. 1, 359-392, 1998.
doi:10.1137/S1064827595287997

28. Karypis, G. and V. Kumar, , Metis: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, available on line at: http://www.cs.umn.edu/~karypis/metis/metis.html, 1998.