Vol. 99
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-11-17
Maxwell Garnett Rule for Dielectric Mixtures with Statistically Distributed Orientations of Inclusions
By
Progress In Electromagnetics Research, Vol. 99, 131-148, 2009
Abstract
An analytical model of an effective permittivity of a composite taking into account statistically distributed orientations of inclusions in the form of prolate spheroids will be presented. In particular, this paper considers the normal Gaussian distribution for either zenith angle, or azimuth angle, or for both angles describing the orientation of inclusions. The model is an extension of the Maxwell Garnett (MG) mixing rule for multiphase mixtures. The resulting complex permittivity is a tensor in the general case. The formulation presented shows that the parameters of the distribution law for orientation of inclusions affect the frequency characteristics of the composites, and that it is possible to engineer the desirable frequency characteristics, if the distribution law is controlled.
Citation
Marina Koledintseva, Richard E. DuBroff, and Robert W. Schwartz, "Maxwell Garnett Rule for Dielectric Mixtures with Statistically Distributed Orientations of Inclusions," Progress In Electromagnetics Research, Vol. 99, 131-148, 2009.
doi:10.2528/PIER09091605
References

1. Mackay, T. G., A. Lakhtakia, and W. S. Weiglhofer, "Homogenization of similarly oriented, metallic, ellipsoidal inclusions using the bilocal-approximated strong-property-fluctuation theory," Opt. Commun., Vol. 197, 89-95, 2001.
doi:10.1016/S0030-4018(01)01433-X

2. Weighlhofer, W. S. and A. Lahtakia, "Electromagnetic wave propagation in super-cholesteric materials parallel to the helical axis," J. Phys. D: Appl. Phys., Vol. 26, 2117-2122, 1993.
doi:10.1088/0022-3727/26/12/004

3. Michel, B., A. Lakhtakia, and W. S. Weiglhofer, "Homogenization of linear bianisotropic particulate composite media --- Numerical studies," Int. J. of Applied Electromagnetics and Mechanics, Vol. 9, 167-178, 1998.

4. Lakhtakia, A., Michel, and W. S. Weiglhofer, "Bruggemen formalism for two models of uniaxial composite media: Dielectric properties," Composites Science and Technology, Vol. 57, No. 2, 185-196, 1997.
doi:10.1016/S0266-3538(96)00122-4

5. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. Geoscience and Remote Sensing, Vol. 26, No. 4, 420-429, Jul. 1988.
doi:10.1109/36.3045

6. Sihvola, A. H., J. O. Juntunen, and P. Eratuuli, "Macroscopic electromagnetic properties of bi-anisotropic mixtures," IEEE Trans. Antennas and Propagation, Vol. 44, No. 6, 836-843, Jun. 1996.
doi:10.1103/PhysRevB.56.8035

7. Levy, O. and D. Stroud, "Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers," Phys. Rev. B, Vol. 56, No. 13, 8035-8046, Oct. 1997.
doi:10.1098/rsta.1904.0024

8. Maxwell Garnett, J. C., "Colours in metal glasses and metal films," Philos. Trans. R. Soc. London, Sect. A, Vol. 3, 385-420, 1904.

9. Bruggeman, D. A. G., "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Annalen der Physik, Vol. 5, No. 24, 636-679, 1936.
doi:10.1088/0022-3727/33/16/306

10. Beroual, A., C. Brosseau, and A. Boudida, "Permittivity of lossy dielectric heterostructures. Effect of shape anisotropy," J. Phys. D: Appl. Phys., Vol. 33, 1969-1974, 2000.
doi:10.1063/1.1321779

11. Brosseau, C., A. Beroual, and A. Boudida, "How shape anisotropy and spatial orientation of the constituents affect the permittivity of dielectric heterostructures?," J. Appl. Phys., Vol. 88, 7278-7288, 2000.
doi:10.1364/JOSAA.19.001145

12. Ao, C. O. and J. A. Kong, "Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids," J. Opt. Soc. Am. A, Vol. 19, 1145-1156, Jun. 2002.
doi:10.1163/156939304323105736

13. Qing, A., X. Xu, and Y. B. Gan, "Effective permittivity tensor of a composite material with aligned spheroidal inclusions," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 899-910, 2004.
doi:10.1109/TAP.2004.841316

14. Qing, A., X. Xu, and Y. B. Gan, "Anisotropy of composite materials with inclusion orientation preference," IEEE Trans. Antennas and Propagation, Vol. 53, No. 2, 737-744, Feb. 2005.
doi:10.1063/1.523209

15. Twersky, V., "Coherent scalar field in pair-correlated random distribution of aligned scatterers," J. Math. Phys., Vol. 18, 2468-2486, 1977.
doi:10.1109/TAP.1985.1143675

16. Varadan, V. V. and V. K. Varadan, "Anisotropic dielectric properties of media containing aligned non-spherical scatterers," IEEE Trans. Antennas and Propagation, Vol. 33, No. 8, 886-890, Aug. 1985.
doi:10.1063/1.118821

17. Skryabin, I. L., A. V. Radchik, P. Moses, and G. B. Smith, "The consistent application of Maxwell-Garnett effective medium theory to anisotropic composites," Appl. Phys. Lett., Vol. 70, No. 17, 2221-2223, Apr. 1997.
doi:10.1103/PhysRevB.47.8528

18. Barrera, R. G., J. Giraldo, and W. L. Mochan, "Effective dielectric response of a composite with aligned spheroidal inclusions," Phys. Rev. B, Vol. 47, No. 4, 8528-8538, Apr. 1993.
doi:10.1103/PhysRevB.53.6318

19. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Review B, Vol. 53, No. 9, 6318-6336, Mar. 1996.
doi:10.1163/156939304774114682

20. Xu, X., A. Qing, Y. B. Gan, and Y. P. Feng, "Effective properties of fiber composite materials," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 5, 649-662, 2004.
doi:10.1016/0266-3538(92)90023-V

21. Sturman, P. C. and R. L. McCullough, "Permittivity of dilute fiber suspension," Composites Science and Technology, Vol. 44, 29-41, 1992.
doi:10.1088/0370-1301/70/8/306

22. Reynolds, J. A. and J. M. Hough, "Formulae for dielectric constant of mixtures," Proceedings of the Physical Society, Section B, Vol. 70, No. 8, 769-775, 1957.

23. Sihvola, A. H., Electromagnetic Mixing Formulas and Applications, Institution of Engineering and Technology (IET), London, UK, 1999.

24. Koledintseva, M. Y., P. C. Ravva, R. E. DuBroff, J. L. Drewniak, K. N. Rozanov, and B. Archambeault, "Engineering of composite media for shields at microwave frequencies," Proc. IEEE EMC Symposium, Vol. 1, 169-174, Chicago, IL, Aug. 2005.

25. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Vol. 1, 309-314, Santa Clara, CA, Aug. 9-13, 2004.
doi:10.2528/PIERB09050410

26. Koledintseva, M. Y., J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, and B. Archambeault, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetic Research B, Vol. 15, 197-215, 2009.
doi:10.2528/PIER06052601

27. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetic Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06110903

28. Koledintseva, M. Y., S. K. R. Chandra, R. E. DuBroff, and R. W. Schwartz, "Modeling of dielectric mixtures containing conducting inclusions with statistically distributed aspect ratio," Progress In Electromagnetic Research, Vol. 66, 213-228, 2006.
doi:10.2528/PIER07073103

29. Koledintseva, M. Y., R. E. DuBroff, R. W. Schwartz, and J. L. Drewniak, "Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencies," Progress In Electromagnetic Research, Vol. 77, 193-214, 2007.

30. Pollak, B. P., V. V. Kolchin, and A. E. Hanamirov, "The nature of the ferromagnetic linewidth of polycrystalline hexaferrites," Russian Physics Journal, Vol. 12, No. 1, 14-16, Russia, 1969.

31. Pollak, B. P., "Analysis of peculiarities of magnetic susceptibility tensor of polycristalline hexagonal ferrite," Trans. Moscow Power Engineering Institute, Vol. 320, 45-53, Russia, 1977.

32. Kitaytsev, A. A., M. Y. Koledintseva, V. P. Cheparin, and A. A. Shinkov, "Electrodynamic parameters of composite gyromagnetic material based on hexagonal ferrites," Proc. URSI Symp. Electromagnetic Theory EMT'98, Vol. 2, 790-793, Greece, Thessaloniki, May 1998.

33. Kitaytsev, A., M. Koledintseva, and A. Shinkov, "Effective permittivity and permeability of composite gyromagnetic material with hexagonal ferrite filler," Proc. 43 Scientific Colloq. Technical Univ. Ilmenau, Vol. 3, 451-455, Section C3.5.4, Germany, Sep. 21-24, 1998.