Vol. 97
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-10-22
Practical Limitations of an Invisibility Cloak
By
Progress In Electromagnetics Research, Vol. 97, 407-416, 2009
Abstract
We studied the practical limitations of a linearly transformed invisibility cloak due to the loss and discretization. We found that in order for the cloaking applications to be practically useful, for example, to reduce the scattering by two orders, the maximum loss tangent allowed in the cloak needs to be of or within the order of 0.01, which also limits the radius of a concealed object to be roughly within one wavelength. For a large cloak, if its size is increased by one order, the maximum allowed loss tangent needs to be reduced by one order accordingly. For discretization, we studied both lossless and lossy cases and found that a little loss will expedite the convergence of scattering with increase of the number of layers. Insufficient layers may increase the scattering and thus make the object more visible instead of invisible.
Citation
Baile Zhang, Hongsheng Chen, and Bae-Ian Wu, "Practical Limitations of an Invisibility Cloak," Progress In Electromagnetics Research, Vol. 97, 407-416, 2009.
doi:10.2528/PIER09100704
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

4. Cummer, S. A., B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621

5. Chen, H., B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1103/PhysRevLett.99.063903

6. Zhang, B., H. Chen, B.-I. Wu, Y. Luo, L. X. Ran, and J. A. Kong, "Response of a cylindrical invisibility cloak to electromagentic waves," Phys. Rev. B, Vol. 76, 121101, 2007.
doi:10.1103/PhysRevB.76.121101

7. Zhang, B., H. Chen, B.-I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an actice device inside," Phys. Rev. Lett., Vol. 100, 063904, 2008.
doi:10.1103/PhysRevLett.100.063904

8. Zhang, B., B.-I. Wu, H. Chen, and J. A. Kong, "Rainbow and blueshift effect of a dispersive spherical invisibility cloak impinged on by a nonmonochromatic plane wave," Phys. Rev. Lett., Vol. 101, 063902, 2008.
doi:10.1103/PhysRevLett.101.063902

9. Ruan, Z., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Phys. Rev. Lett., Vol. 99, 113903, 2007.
doi:10.1103/PhysRevLett.99.113903

10. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Phot. , Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28

11. Cheng, X., H. Chen, B.-I. Wu, and J. A. Kong, "Cloak for bianisotropic and moving media," Progress In Electromagnetics Research, Vol. 89, 199-212, 2009.
doi:10.2528/PIER08120803

12. Cheng, Q., W. X. Jiang, and T. J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.
doi:10.2528/PIER09060705

13. Zhang, J. J., Y. Luo, H. Chen, and B.-I. Wu, "Sensitivity of transformation cloak in engineering," Progress In Electromagnetics Research, Vol. 84, 93-104, 2008.
doi:10.2528/PIER08071301

14. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.
doi:10.1103/PhysRevE.72.016623

15. Sihvola, A. H., "Peculiarities in the dielectric response of negative-permittivity scatterers," Progress In Electromagnetics Research, Vol. 66, 191-198, 2006.
doi:10.2528/PIER06112001

16. Milton, G. W. and N.-A. P. Picorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A, Vol. 462, 3027-3059, 2006.
doi:10.1098/rspa.2006.1715

17. Pendry, J. B, A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev.Lett., Vol. 76, 4773-1776, 1996.
doi:10.1103/PhysRevLett.76.4773

18. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
doi:10.1038/nature07247

19. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

20. Xi, S., H. Chen, B.-I. Wu, B. Zhang, J. Huangfu, D. Wang, and J. A. Kong, "Effects of different transformations on the performance of cylindrical cloaks," Journal of Electromagnetic Waves and Applications, Vol. 22, 1489-1497, 2008.
doi:10.1163/156939308786390166

21. Vafi, K., A. R. Javan Maleki, M. S. Abrishamian, and N. Granpayeh, "Dispersive behavior of plasmonic and metamaterial coating on achieving transparency," Journal of Electromagnetic Waves and Applications, Vol. 22, 941-952, 2008.
doi:10.1163/156939308784150137