Vol. 99
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-12-01
Chitosan Spheroids with Microwave Modulated Drug Release
By
Progress In Electromagnetics Research, Vol. 99, 355-382, 2009
Abstract
The interplay effects of matrix formulations with microwave on drug release were investigated using an agglomerate system. Chitosan spheroids were formulated with stearic acid and/or sodium chloride by extrusion-spheronization technique, and chlorpheniramine maleate as water-soluble model drug. The spheroids were treated by microwave at 80 W for 5 to 40 min. The profiles of drug dissolution, drug content, drug-polymer interaction, polymer-polymer interaction, sodium leaching, matrix morphology and integrity were determined. Unlike chitosan matrix prepared by ionotropic gelation method, the retardation of drug release from chitosan spheroids by microwave required a more complex formulation containing both stearic acid and sodium chloride unless a high stearic acid fraction was used. These spheroids demonstrated a high resistance to disintegration during dissolution owing to salt-induced bridging by sodium chloride. In response to microwave, sodium chloride aided stearic acid spread and effected domain interaction via C=O moiety over a matrix with reduced specific surface area thereby reducing drug dissolution. The drug release of spheroids can be retarded by microwave through promoting the layering of hydrophobic stearic acid in a matrix structure sustained by sodium chloride.
Citation
Zakaria Zabliza, and Tin Wui Wong, "Chitosan Spheroids with Microwave Modulated Drug Release," Progress In Electromagnetics Research, Vol. 99, 355-382, 2009.
doi:10.2528/PIER09101001
References

1. Ku, H.-S. and T. Yusaf, "Processing of composites using variable and fixed frequency microwave facilities," Progress In Electromagnetics Research B, Vol. 5, 185-205, 2008.
doi:10.2528/PIERB08011304

2. Wong, T.-W., A. Iskhandar, M. Kamal, S.-J. Jumi, N.-H. Kamarudin, N.-Z. Mohamad Zin, and N.-H. Mohd Salleh, "Effects of microwave on water and its influence on drug dissolution," Progress In Electromagnetics Research C, Vol. 11, 121-136, 2009.

3. Vandelli, M.-A., M. Romagnoli, A. Monti, M. Gozzi, P. Guerra, F. Rivasi, and F. Forni, "Microwave-treated gelatin microspheresv as drug delivery system," J. Controlled Release, Vol. 96, 67-84, 2004.
doi:10.1016/j.jconrel.2004.01.009

4. Nurjaya, S. and T.-W. Wong, "Effects of microwave on drug release properties of matrices of pectin," Carbohydr. Polym., Vol. 62, 245-257, 2005.
doi:10.1016/j.carbpol.2005.07.029

5. Wong, T.-W., A.-W. Selasiah, and A. Yolande, "Effects of microwave on drug release property of poly (methyl-vinlyether-co-maleic acid) matrix," Drug Dev. Ind. Pharm., Vol. 33, 737-746, 2007.
doi:10.1080/03639040601015513

6. Wong, T.-W., A.-W. Selasiah, and Y. Anthony, "Drug release responses of zinc ion crosslinked poly (methyl vinyl ether-co-maleic acid) matrix towards microwave," Int. J. Pharm., Vol. 357, 154-163, 2008.
doi:10.1016/j.ijpharm.2008.01.047

7. Wong, T.-W. and S. Nurjaya, "Drug release property of chitosan-pectinate beads and its changes under the influence of microwave," Eur. J. Pharm. Biopharm., Vol. 69, 176-188, 2008.
doi:10.1016/j.ejpb.2007.09.015

8. Wong, T.-W., "Use of microwave in processing of drug delivery systems," Curr. Drug Deliv., Vol. 5, 77-84, 2008.
doi:10.2174/156720108783954842

9. Gandhi, R., C.-L. Kaul, and R. Panchagnula, "Extrusion and spheronization in the development of oral controlled-release dosage forms," Pharm. Sci. Tech. Today, Vol. 2, 160-170, 1999.
doi:10.1016/S1461-5347(99)00136-4

10. Chopra, R., G. Alderborn, F. Podczeck, and J.-M. Newton, "The influence of pellet shape and surface properties on the drug release from uncoated and coated pellets," Int. J. Pharm., Vol. 239, 171-178, 2002.
doi:10.1016/S0378-5173(02)00104-7

11. Sousa, J.-J., A. Sousa, M.-J. Moura, F. Podczeck, and J.-M. Newton, "The influence of core materials and film coating on the drug release from coated pellets," Int. J. Pharm., Vol. 233, 111-122, 2002.
doi:10.1016/S0378-5173(01)00921-8

12. Zheng, W., D. Sauer, and J.-W. McGinity, "Influence of hydrox-yethylcellulose on the drug release properties of theophylline pellets coated with EudragitR RS 30 D," Eur. J. Pharm. Biopharm., Vol. 59, 147-154, 2005.
doi:10.1016/j.ejpb.2004.06.002

13. Sriamornsak, P. and R.-A. Kennedy, "Effect of drug solubility on release behavior of calcium polysaccharide gel-coated pellets," Eur. J. Pharm. Sci., Vol. 32, 231-239, 2007.
doi:10.1016/j.ejps.2007.08.001

14. Vervaet, C., L. Baert, and J.-P. Remon, "Extrusion-spheronization: A literature review," Int. J. Pharm., Vol. 116, 131-146, 1995.
doi:10.1016/0378-5173(94)00311-R