Vol. 102
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-02-15
Band Gap Extension in a One-Dimensional Ternary Metal-Dielectric Photonic Crystal
By
Progress In Electromagnetics Research, Vol. 102, 81-93, 2010
Abstract
Comparing with an all-dielectric binary photonic crystal, we show, in this work, that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged. First, the band gap enlargement due to the addition of the metallic film is examined in the case of normal incidence. Next, in the oblique incidence, a wider omnidirectional band gap can be obtained in such a ternary metal-dielectric photonic crystal. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metals.
Citation
Chien-Jang Wu, Yao-Hsien Chung, Bao-Jie Syu, and Tzong-Jer Yang, "Band Gap Extension in a One-Dimensional Ternary Metal-Dielectric Photonic Crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004
References

1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

2. Sakoda, K., Optical Properties of Photonic Crystals, Springer-Verlag, Berlin, 2001.

3. Orfanidis , S. J., Electromagnetic Waves and Antennas, Rutger University, 2008, www.ece.rutgers.edu/ orfanidi/ewa.

4. Hsu, H.-T. and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
doi:10.2528/PIERL09032803

5. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-direction reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

6. Banerjee, A., "Binary number sequence multilayer structure based on refractometric optical sensing element," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2439-2449, 2008.
doi:10.1163/156939308787543912

7. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures," Appl. Phys. Lett., Vol. 80, 4291-4293, 2002.
doi:10.1063/1.1484547

8. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and L. E. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

9. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

10. John, S., "Strong localization of photons in certain disordered lattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

11. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.

12. Wu, C.-J., B.-H. Chu, M.-T. Weng, and H.-L. Lee, "Enhancement of bandwidth in a chirped quarter-wave dielectric mirror," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 437-447, 2009.
doi:10.1163/156939309787612365

13. Wu, C.-J., B.-H. Chu, and M.-T. Weng, "Analysis of optical reflection in a chirped distributed Bragg reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 129-138, 2009.
doi:10.1163/156939309787604643

14. Wu, C.-J., Y.-N. Rao, and W.-H. Han, "Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010.
doi:10.2528/PIER09111610

15. Li, H., H. Chen, and X. Qiu, "Bandgap extension of disordered 1D binary photonic crystals," Physica B, Vol. 279, 164-167, 2007.
doi:10.1016/S0921-4526(99)00716-4

16. Tolmachev, V. A., T. S. Perova, J. A. Pilyugina, and R. A. Moore, "Experimental evidence of photonic band gap extension for disordered 1D photonic crystals based on Si," Optics Comm., Vol. 259, 104-106, 2006.
doi:10.1016/j.optcom.2005.08.025

17. Qi, L., Z. Yang, X. Gao, F. Lan, Z. Shi, and Z. Liang, "Bandgap extension of disordered one-dimensional metallic-dielectric photonic crystals," IEEE International Vacuum Electronics Conference, IVEC, 158-159, 2008.

18. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures," Appl. Phys. Lett., Vol. 80, No. 23, 4291-4293, 2002.
doi:10.1063/1.1484547

19. Zi, J., J. Wan, and C. Zhang, "Large frequency range of negligible transmission in one-dimensional photonic quantum well structures ," Appl. Phys. Lett. , Vol. 73, No. 15, 2084-2086, 1998.
doi:10.1063/1.122385

20. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

21. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B: Optical Physics, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566

22. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using a one-dimensional ternary photonic ban gap material," Progress In Electromagnetics Research M, Vol. 4, 117-132, 2008.
doi:10.2528/PIERM08061302

23. Banerjee, A., "Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137, 2009.
doi:10.2528/PIERL09080101

24. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105

25. Prasad, S., V. Singh, and A. K. Singh, "Modal propagation characteristics of EM waves in ternary one-dimensional photonic crystals," Optik, 2009.

26. Contopanagos, H., E. Yablonovitch, and N. G. Alexopoulous, "Electromagnetic properties of periodic multilayers of ultrathin metallic films from dc to ultraviolet frequencies ," J. Opt. Soc. Am. A, Vol. 16, 2294-2306, 1999.
doi:10.1364/JOSAA.16.002294

27. Contopanagos, H., N. G. Alexopoulous, and E. Yablonovitch, "High-Q radio-frequency structures using one-dimensionally periodic metallic films ," IEEE Trans. Microwave Theory Technol., Vol. 46, 1310-1312, 1998.
doi:10.1109/22.709476

28. Keskinen, M. J., P. Loschialpo, D. Forester, and J. Schelleng, "Photonic band structure and transmissivity of frequency-dependent metallic-dielectric systems," J. Appl. Phys., Vol. 88, 5785-5790, 2000.
doi:10.1063/1.1289045

29. Xu, X., Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, "Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals," Appl. Phys. Lett., Vol. 86, 091112, 2005.
doi:10.1063/1.1879101

30. Born, M. and E. Wolf, Principles of Optics, Cambridge, London, 1999.

31. Marquez-Islas, R., B. Flores-Desirena, and F. Perez-Rodriguez, "Exciton polaritons in one-dimensional metal-semiconductor photonic crystal," J. Nanosci. Nanotechnol., Vol. 8, 6584-6588, 2008.

32. Markos, P. and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials, Princeton University Press, New Jersey, 2008.