Vol. 107
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-04
A Novel Approach for RCS Reduction Using a Combination of Artificial Magnetic Conductors
By
Progress In Electromagnetics Research, Vol. 107, 147-159, 2010
Abstract
A thin Artificial Magnetic Conductor (AMC) structure for Radar Cross-Section (RCS) reduction applications is presented. The manufactured prototype, which combines two unit-cell metallization sizes, presenting two resonant frequencies, shows broad AMC operation bandwidth, polarization angle independency, and its angular margin when operating under oblique ncidence is also tested. It is shown that significant RCS reduction can be achieved with the proposed AMCs combination even if a 180º phaseshift between reflected waves is not met. Two designs are considered: the already mentioned design combining AMCs with overlapped frequency bands and the second one combining Perfect Electric Conductor (PEC) and AMC surfaces. A comparison between these two designs regarding RCS reduction, supported by measurements in an anechoic chamber, is presented.
Citation
María Elena de Cos, Yuri Alvarez-Lopez, and Fernando Las Heras Andres, "A Novel Approach for RCS Reduction Using a Combination of Artificial Magnetic Conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402
References

1. Lee, K.-C., C.-W. Huang, and M.-C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.

2. Li, N.-J., C.-F. Hu, L.-X. Zhang, and J.-D. Xu, "Overview of RCS extrapolation techniques to aircraft targets," Progress In Electromagnetics Research B, Vol. 9, 249-262, 2008.

3. Pouliguen, P., R. Hemon, C. Bourlier, J.-F. Damiens, and J. Saillard, "Analytical formulae for radar cross section of flat plates in near field and normal incidence," Progress In Electromagnetics Research B, Vol. 9, 263-279, 2008.

4. Alexopoulos, A., "Effect of atmospheric propagation in RCS predictions," Progress In Electromagnetics Research, Vol. 101, 277-290, 2010.

5. Abdelaziz, A. A., "Improving the performance of an antenna array by using radar absorbing cover ," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.

6. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, and A. A. Abdelaziz, "Factors affecting the performance of the radar absorbant textile materials of different types and structus," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.

7. Hemming, L. H., Electromagnetic Anechoic Chambers: A Fundamental Design and Specification Guide, Vol. 8, IEEE Press, John Wiley Interscience, 2002.

8. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., 269-276, Artech House, 1993.

9. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials ," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.

10. Chen, H.-Y., P. Zhou, L. Chen, and L. Deng, "Study on the properties of surface waves in coated ram layers and monostatic rcs performances of the coated slab ," Progress In Electromagnetics Research M, Vol. 11, 123-135, 2010.

11. Salisbury, W. W., Absorbent body for electromagnetic waves, U. S. Patent 2 599 944, Jun. 10, 1952.

12. Kazem, A. Z. and A. Karlsson, "Capacitive circuit method for fast and e±cient design of wideband radar absorbers," IEEE Trans. on Antennas and Propag., Vol. 57, No. 8, 2307-2314, 2009.

13. Abdelaziz, A. A., "A novel technique for improving the performance of salisbury screen," Progress In Electromagnetics Research Letters, Vol. 1, 1-8, 2008.

14. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Trans. on Antennas and Propag., Vol. 36, No. 10, 1443-1454, Oct. 1988.

15. Engheta, N., "Thin absorbing screens using metamaterial surfaces," Proc. IEEE Antennas Propag. Societ Int. Symp., 392-395, 2002.

16. Zheng, Q.-R., Y.-M. Yan, X.-Y. Cao, and N.-C. Yuan, "High impedance ground plane (HIGP) incorporated with resistance for radar cross section (RCS) reduction of antenna," Progress In Electromagnetics Research, Vol. 84, 307-319, 2008.

17. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.

18. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.

19. Chen, H. T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.

20. Zhang, Y., R. Mittra, B. Z. Wang, and N. T. Huang, "AMCs for ultra-thin and broadband RAM design," Electronics Letters, Vol. 45, No. 10, 484-485, 2009.

21. Zhang, Y., R. Mittra, and B. Z. Wang, "Novel design for low-RCS screens using a combination of Dual-AMC," Antennas and Propagation Society Intl. Symposium, 2009. APSURSI'09, 1-4, Jun. 1-5, 2009.

22. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross section reduction," IEEE Trans. on Antennas and Propag., Vol. 55, No. 12, 3630-3638, Dec. 2007.

23. Iriarte, J. C., et al. "RCS reduction in a chessboard-like structure using AMC cells," Proceedings EUCAP 2007, 1-4, Nov. 11-16, 2007.

24. Yang, F., K. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-EBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory and Tech., Vol. 47, 1509-1514, Aug. 1999.

25. De Cos, M. E., Y. Alvarez, and F. Las-Heras, "Planar artificial magnetic conductor: Design and characterization setup in the RFID SHF band ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1467-1478, 2009.

26. Luukkonen, O., O., C. R. Simovski, and S. A. Tretyakov, "Grounded uniaxial material slabs as magnetic conductors," Progress In Electromagnetics Research B, Vol. 15, 267-283, 2009.

27. Iriarte, J. C., et al. "Dual band RCS reduction using planar technology by combining AMC structures," Proc. Eucap, 2009.

28. Li, Y., et al. "Prototyping dual-band artificial magnetic conductors with laser micromachining," Proc. of WARS2006 Conference, Leura, NSW, Australia, Feb. 2006.