Vol. 106
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-07-26
Flexible Uniplanar Artificial Magnetic Conductor
By
Progress In Electromagnetics Research, Vol. 106, 349-362, 2010
Abstract
The design of a flexible uniplanar AMC is presented. A prototype is manufactured and characterized based on reflection coe±cient phase under flat and bent conditions. The designed prototype shows broad AMC operation bandwidth and polarization angle independency in both flat and bent situations. Its angular margin when operating under oblique incidence is also tested. FEM simulations and measurements in an anechoic chamber are presented.
Citation
María Elena de Cos, Yuri Alvarez-Lopez, Ramona Cosmina Hadarig, and Fernando Las Heras Andres, "Flexible Uniplanar Artificial Magnetic Conductor," Progress In Electromagnetics Research, Vol. 106, 349-362, 2010.
doi:10.2528/PIER10061505
References

1. Sievenpiper, D., et al. "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

2. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402

3. Yang, F. and Y. Rahmat-Samii, "Electromagnetic band-gap structures in antenna engineering," The Cambridge RF and Microwave Engineering Series, Cambridge University Press, 2008.

4. McVay, J., N. Engheta, and A. Hoofar, "High impedance metamaterials surfaces using Hilbert-curve inclusions," IEEE Microw. Wire. Comp. Lett., Vol. 14, No. 3, 130-132, 2004.
doi:10.1109/LMWC.2003.822571

5. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor design using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302

6. De Cos, M. E., F. Las-Heras, and M. Franco, "Design of planar artificial magnetic conductor ground plane using frequency-selective surfaces for frequencies below 1 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 951-954, 2009.
doi:10.1109/LAWP.2009.2029133

7. De Cos, M. E., Y. Alvarez, and F. Las-Heras, "Planar artificial magnetic conductor: Design and characterization setup in the RFID SHF band," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1467-1478, 2009.
doi:10.1163/156939309789476248

8. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuza, and M. J. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 53, No. 1, Jan. 2005.
doi:10.1109/TAP.2004.840540

9. De Cos, M. E., Y. Alvarez, R. C. Hadarig, and F. Las-Heras, "Novel SHF band uniplanar Artificial Magnetic Conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 44-47, 2010.
doi:10.1109/LAWP.2010.2041890

10. Luukkonen, O., C. R. Simovski, and S. A. Tretyakov, "Grounded uniaxial material slabs as magnetic conductors," Progress In Electromagnetics Research B, Vol. 15, 267-283, 2009.
doi:10.2528/PIERB09050702

11. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. on Antennas and Propag., Vol. 57, No. 4, Apr. 2009.
doi:10.1109/TAP.2009.2014527

12. Salonen, P. and Y. Rahmat-Samii, "Textile antennas: Effects of antenna bending on input matching and impedance bandwidth," IEEE Aerospace Electronic Systems Magazine, Vol. 22, No. 3, 10-14, 2007.
doi:10.1109/MAES.2007.340501

13. Salonen, P., M. Keskilammi, and L. Sydanheimo, "A low-cost 2.45 GHz photonic band-gap patch antenna for wearable systems," Proc. 11th Int. Conf. Antennas and Propagation, 719-724, Apr. 17-20, 2001.

14. Salonen, P. and Y. Rahmat-Samii, "WEBGA-wearable electromagnetic band-gap antenna," IEEE APS Int. Symp. Dig., Vol. 1, 451-454, Monterrey, CA, Jun. 2004.

15. Monorchio, A., G. Manara, and L. Lanuzza, "Synthesis of artificial magnetic conductors by usisng multilayered frequency selective surfaces," IEEE Ant. Wireless Propag. Lett., Vol. 1, 196-199, 2002.
doi:10.1109/LAWP.2002.807956

16. Xie, H.-H., Y.-C. Jiao, K. Song, and Z. Zhang, "A novel multi-band electromagnetic band-gap structure," Progress In Electromagnetics Research Letters, Vol. 9, 67-74, 2009.
doi:10.2528/PIERL09042302

17. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-direction reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

18. Ekmekci, E. and G. Turhan-Sayan, "Comparative investigation of resonance characteristics and electrical size of the double-sided Srr, Bc-Srr and conventional srr type metamaterials for varying substrate parameters," Progress In Electromagnetics Research B, Vol. 12, 35-62, 2009.
doi:10.2528/PIERB08120405

19. Pajewski, L., L. Rinaldi, and G. Schettini, "Enhancement of directivity using 2D-electromagnetic crystals near the band-gap edge: A full-wave approach," Progress In Electromagnetics Research, Vol. 80, 179-196, 2008.
doi:10.2528/PIER07111504

20. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. on Antennas and Propag., Vol. 51, No. 10, 2691-2701, 2003.
doi:10.1109/TAP.2003.817559

21. McVay, J., A. Hoofar, and N. Engheta, "Small dipole-antenna near Peano high-impedance surfaces," IEEE AP-S Int. Symp., Vol. 1, 305-308, 2004.

22. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. on Antennas and Propag., Vol. 52, No. 9, Sep. 2004.
doi:10.1109/TAP.2004.834135

23. Akhoondzadeh-Asl, L., D. J. Kern, P. Hall, and D. Werner, "Wideband dipoles on electromagnetic bandgap ground planes," IEEE Trans. on Antennas and Propag., Vol. 55, No. 9, Sep. 2007.
doi:10.1109/TAP.2007.904071

24. Liang, J. and H.-Y. D. Yang, "Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface," IEEE Trans. on Antennas and Propag., Vol. 55, No. 6, Jun. 2007.

25. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artifiial magnetic conductor surfaces and their application to low profile highgain planar antennas," IEEE Trans. on Antennas and Propag., Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/TAP.2004.840528

26. Sohn, J. R., K. Y. Kim, and H.-S. Tae, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:10.2528/PIER06011701

27. Yang, F. and Y. Rahmat Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna," Progress In Electromagnetics Research, Vol. 77, 2007.

28. Shaban, H., H. Elmikaty, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna," Progress In Electromagnetics Research B, Vol. 10, 55-74, 2008.
doi:10.2528/PIERB08081901

29. Hosseini, M. and S. Bashir, "A novel circularly polarized antenna based on an artificial ground plane," Progress In Electromagnetics Research Letters, Vol. 5, 13-22, 2008.
doi:10.2528/PIERL08102004

30. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

31. Rajo-Iglesias, E., L. Inclan-Sanchez, and O. Quevedo-Teruel, "Back radiation reduction in patch antennas using planar soft surfaces," Progress In Electromagnetics Research Letters, Vol. 6, 123-130, 2009.
doi:10.2528/PIERL08111202

32. Yuan, H.-W., S.-X. Gong, X.Wang, and W.-T.Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
doi:10.2528/PIERB07102302

33. Duan, Z., S. Qu, and Y. Hou, "Electrically small antenna inspired by spired split ring resonator," Progress In Electromagnetics Research Letters, Vol. 7, 47-57, 2009.
doi:10.2528/PIERL09012005

34. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

35. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Design of photonic band gap filter," Progress In Electromagnetics Research, Vol. 81, 225-235, 2008.
doi:10.2528/PIER08010902

36. Fallahzadeh, S., H. Bahrami, and M. Tayarani, "A novel dual-band bandstop waveguide filter using split ring resonators," Progress In Electromagnetics Research Letters, Vol. 12, 133-139, 2009.
doi:10.2528/PIERL09103103

37. Awasthi, S. K., U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, "Design of a tunable polarizer using a one-dimensional nano sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
doi:10.2528/PIERB08021004

38. Hu, X., Q. Zhang, and S. He, "Compact dual-band rejection filter based on complementary meander line split ring resonator," Progress In Electromagnetics Research Letters, Vol. 8, 181-190, 2009.
doi:10.2528/PIERL08110801

39. Liu, J.-C., H.-C. Lin, and B.-H. Zeng, "Complementary split ring resonators with dual mesh-shaped couplings and defected ground structures for wide pass-band and stop- band BPF design," Progress In Electromagnetics Research Letters, Vol. 10, 19-28, 2009.

40. Karthikeyan, S. S. and R. S. Kshetrimayum, "Compact wideband bandpass filter using open slot split ring resonator and CMRC," Progress In Electromagnetics Research Letters, Vol. 10, 39-48, 2009.
doi:10.2528/PIERL09061602

41. Hsu, H., M. J. Hill, R. W. Ziolkowski, and J. Papapolymerou, "A duroid-based planar EBG cavity resonator filter with improved quality factor," IEEE Antennas and Propag. Letters, Vol. 1, 67-70, 2002.
doi:10.1109/LAWP.2002.802548

42. Engheta, N., "Thin absorbing screens using metamaterial surfaces," IEEE Antennas and Propag. Society International Symp., Vol. 2, 392-395, Jun. 16-21, 2002.

43. Zheng, Q.-R., Y.-M. Yan, X.-Y. Cao, and N.-C. Yuan, "High impedance ground plane (Higp) incorporated with resistance for radar cross section (RCS) reduction of antenna," Progress In Electromagnetics Research, Vol. 84, 307-319, 2008.
doi:10.2528/PIER08072003

44. Belaid, M. and K. Wu, "Spatial power amplifier using a passive active TEM waveguide concept," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 3, 684-689, Mar. 2003.
doi:10.1109/TMTT.2003.808698

45. Li, Y. D., et al. "Prototyping dual-band artificial magnetic conductors with laser micromachining," Proc. of WARS Conference, Leura, NSW, Australia, Feb. 2006.