Vol. 108
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-09-23
Enhancement of Blue Light Emission Using Surface Plasmons Coupling with Quantum Wells
By
Progress In Electromagnetics Research, Vol. 108, 293-306, 2010
Abstract
3-dimension finite-difference time-domain (FDTD) method is used to simulate the enhanced blue light emission of gallium nitride light emitting diode (GaN-LED) using the surface-plasmons (SPs) coupling with the quantum wells. The numerical simulation results demonstrate that when the silver film is coated on GaN-LED, the excited SPs play a key role in the enhanced blue light emission, and the enhancement depends on the geometries of GaN-LED and silver film. An enhancement factor is given to describe the enhancement effect of light emission. By changing the structure parameters of GaN-LED and silver film, the enhanced peak of the light emission in the visible region can be controlled. Under the optimal parameters, about 17 times enhancement at 460 nm can be obtained, and the enhancement effect is evidently demonstrated by the SPs field distribution.
Citation
Jia Zhao, Kang Li, Fanmin Kong, and Du Liu-Ge, "Enhancement of Blue Light Emission Using Surface Plasmons Coupling with Quantum Wells," Progress In Electromagnetics Research, Vol. 108, 293-306, 2010.
doi:10.2528/PIER10072906
References

1. Okamoto, K., I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater., Vol. 3, No. 9, 601-605, 2004.
doi:10.1038/nmat1198

2. Chu, W.-H., Y.-J. Chuang, C.-P. Liu, P.-I. Lee, and S. L.-C. Hsu, "Enhanced spontaneous light emission by multiple surface plasmon coupling," Opt. Express, Vol. 18, No. 9, 9677-9683, 2010.
doi:10.1364/OE.18.009677

3. Song, J. H., T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, "Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons," Nano. Lett., Vol. 5, No. 8, 5, 2005.
doi:10.1021/nl050813r

4. Neogi, A., C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Physical Review B, Vol. 66, No. 15, 153305, 2002.
doi:10.1103/PhysRevB.66.153305

5. Gontijo, I., M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Physical Review B, Vol. 60, No. 16, 11564, 1999.
doi:10.1103/PhysRevB.60.11564

6. Hecker, N. E., R. A. Hopfel, and N. Sawaki, "Enhanced light emission from a single quantum well located near a metal coated surface," Physica E: Low-dimensional Systems and Nanostructures, Vol. 2, No. 1-4, 98-101, 1998.
doi:10.1016/S1386-9477(98)00022-8

7. Chang, C. Y. and Y. R.Wu, "Study of light emission enhancement in nanostructured InGaN/GaN quantum wells," IEEE Journal of Quantum Electronics, Vol. 46, No. 6, 884-889, 2010.
doi:10.1109/JQE.2010.2040515

8. Chen, H. S., D. M. Yeh, C. F. Lu, C. F. Huang, W. Y. Shiao, J. J. Huang, C. C. Yang, I. S. Liu, and W. F. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photonics Technology Letters, Vol. 18, No. 13, 1430-1432, 2006.
doi:10.1109/LPT.2006.877551

9. Purcell, E. M., "Spontaneous emission probabilities at radio frequencies," Physical Review, Vol. 69, 681, 1946.

10. Goy, P., J. M. Raimond, M. Gross, and S. Haroche, "Observation of cavity-enhanced single-atom spontaneous emission," Physical Review Letters, Vol. 50, No. 24, 1903-1906, 1983.
doi:10.1103/PhysRevLett.50.1903

11. Blanco, L. A. and F. J. García de Abajo, "Spontaneous light emission in complex nanostructures," Physical Review B, Vol. 69, No. 20, 205414, 2004.
doi:10.1103/PhysRevB.69.205414

12. Ryu, H. Y. and J. I. Shim, "Structural parameter dependence of light extraction efficiency in photonic crystal InGaN vertical light-emitting diode structures," IEEE Journal of Quantum Electronics, Vol. 46, No. 5, 714-720, 2010.
doi:10.1109/JQE.2009.2035933

13. Long, D. H., I. K. Hwang, and S. W. Ryu, "Design optimization of photonic crystal structure for improved light extraction of GaN LED," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 4, 1257-1263, 2009.
doi:10.1109/JSTQE.2009.2014471

14. Chen, J.-Y., J.-Y. Yeh, L.-W. Chen, Y.-G. Li, and C.-C. Wang, "Design and modeling for enhancement of light extraction in light-emitting diodes with archimedean lattice photonic crystals," Progress In Electromagnetics Research B, Vol. 11, 265-279, 2009.
doi:10.2528/PIERB08112704

15. Maka, T., D. N. Chigrin, S. G. Romanov, and C. M. S. Torres, "Three dimensional photonic crystals in the visible regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003.

16. Lee, C. T., L. Z. Yu, and H. Y. Liu, "Optical performance improvement mechanism of multimode-emitted white resonant cavity organic light-emitting diodes," IEEE Photonics Technology Letters, Vol. 22, No. 5, 272-274, 2010.
doi:10.1109/LPT.2010.2050473

17. Klimov, V. V., "Spontaneous emission of an excited atom placed near a "left-handed" sphere," Optics Communications, Vol. 211, No. 1-6, 183-196, 2002.
doi:10.1016/S0030-4018(02)01802-3

18. Eschner, J., C. Raab, F. Schmidt-Kaler, and R. Blatt, "Light interference from single atoms and their mirror images," Nature, Vol. 413, No. 6855, 495-498, 2001.
doi:10.1038/35097017

19. Trieu, S., X. M. Jin, B. Zhang, T. Dai, K. Bao, X. N. Kang, and G. Y. Zhang, "Light extraction improvement of GaN-based light-emitting diodes using patterned undoped GaN bottom reflection gratings," Proceedings of the SPIE, Vol. 7216, 72162Q-72162Q-8, 2009.
doi:10.1117/12.805480

20. Buss, I. J., G. R. Nash, J. G. Rarity, and M. J. Cryan, "Finite-difference time-domain modeling of periodic and disordered surface gratings in AlInSb light emitting diodes with metallic back-reflectors," IEEE Journal of Lightwave Technology, No. 8, 1190-1200, 2010.
doi:10.1109/JLT.2010.2040803

21. Hecker, N. E., R. A. Hopfel, N. Sawaki, T. Maier, and G. Strasser, "Surface plasmon-enhanced photoluminescence from a single quantum well," Applied Physics Letters, Vol. 75, No. 11, 1577-1579, 1999.
doi:10.1063/1.124759

22. Gianordoli, S., R. Hainberger, A. Kock, N. Finger, E. Gornik, C. Hanke, and L. Korte, "Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes," Applied Physics Letters, Vol. 77, No. 15, 2295-2297, 2000.
doi:10.1063/1.1317538

23. Vuckovic, J., M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE Journal of Quantum Electronics, Vol. 36, No. 10, 1131-1144, 2000.
doi:10.1109/3.880653

24. Kong, F., K. Li, B. I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203

25. Kong, F., K. Li, H. Huang, B. I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.
doi:10.2528/PIER08031224

26. Yoon, J., S. H. Song, and J. H. Kim, "Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: An upper limit," Opt. Express, Vol. 16, No. 2, 1269-1279, 2008.
doi:10.1364/OE.16.001269

27. Suyama, T. and Y. Okuno, "Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement," Progress In Electromagnetics Research, Vol. 72, 91-103, 2007.
doi:10.2528/PIER07030301

28. Sambles, J. R., G. W. Bradbery, and F. Yang, "Optical excitation of surface plasmons: An introduction," Contemporary Physics, Vol. 32, No. 3, 173-18, 1991.
doi:10.1080/00107519108211048

29. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, Vol. 408, No. 3-4, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001

30. Entezar, R. S., A. Namdar, H. Rahimi, and H. Tajalli, "Localized waves at the surface of a single-negative periodic multilayer structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 171-182, 2009.
doi:10.1163/156939309787604427

31. García-Vidal, F. J. and J. B. Pendry, "Collective theory for surface enhanced raman scattering," Physical Review Letters, Vol. 77, No. 6, 1163, 1996.
doi:10.1103/PhysRevLett.77.1163

32. Chuang, W. H., J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter," Applied Physics Letters, Vol. 92, No. 13, 133115, 2008.
doi:10.1063/1.2906363

33. Chuang, W. H., J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Transient behaviors of surface plasmon coupling with a light emitter," Applied Physics Letters, Vol. 93, No. 15, 153104, 2008.
doi:10.1063/1.2998617

34. Wang, J. Y., Y. W. Kiang, and C. C. Yang, "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter," Applied Physics Letters, Vol. 91, No. 23, 233104, 2007.
doi:10.1063/1.2821829

35. Chau, Y. F., H. H. Yeh, and D. P. Tsai, "Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8/9, 1005-1014, 2010.
doi:10.1163/156939310791586098

36. Zhang, X. F., L. F. Shen, J.-J. Wu, and T.-J. Yang, "Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2451-2460, 2009.

37. Suyama, T., Y. Okuno, and T. Matsuda, "Surface plasmon resonance absorption in a multilayered thin-film grating," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1773-1783, 2009.
doi:10.1163/156939309789566914

38. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Purely quadratic dispersion of surface plasmon in Ag/Ni(111): The influence of electron confinement," Physica Status Solidi (RRL) --- Rapid Research Letters, Vol. 2, No. 2, 86-88, 2008.
doi:10.1002/pssr.200701307

39. Politano, A., V. Formoso, E. Colavita, and G. Chiarello, "Probing collective electronic excitations in as-deposited and modified Ag thin films grown on Cu(111)," Physical Review B, Vol. 79, No. 4, 045426, 2009.
doi:10.1103/PhysRevB.79.045426

40. Yu, Y., Y. Jiang, Z. Tang, Q. Guo, J. Jia, Q. Xue, K. Wu, and E. Wang, "Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films," Physical Review B, Vol. 72, No. 20, 205405, 2005.
doi:10.1103/PhysRevB.72.205405

41. Politano, A., V. Formoso, and G. Chiarello, "Damping of the surface plasmon in clean and K-modified Ag thin films," Journal of Electron Spectroscopy and Related Phenomena, Vol. 173, No. 1, 12-17, 2009.
doi:10.1016/j.elspec.2009.03.003

42. Kane, Y., "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

43. Chen, C. Y., Q. Wu, X. J. Bi, Y. M. Wu, and L. W. Li, "Characteristic analysis for FDTD based on frequency response," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 283-292, 2010.
doi:10.1163/156939310790735796

44. Yang, H., "Exponential FDTD for plasma dispersive medium," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1165-1172, 2008.
doi:10.1163/156939308784158913

45. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370, 1972.
doi:10.1103/PhysRevB.6.4370