Vol. 109
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-10-23
Limitations of Approximations Towards Fourier Optics for Indoor Active Millimeter Wave Imaging Systems
By
Progress In Electromagnetics Research, Vol. 109, 245-262, 2010
Abstract
To simulate imaging systems, Fourier optics has been applied very successfully to optics for decades. However, when simply moving to indoor millimeter wave imaging systems, some assumptions underlying the Fourier optics may break down, which contribute to the errors by applying Fourier optics. During the review of mathematical derivation of the Fourier optics, we point out how the errors are introduced by making the Fresnel approximation and omitting the phase factors. To distinguish from much literature, we discuss the accuracy of Fresnel approximation rather than plane wave. Moreover, we check the simulation results for millimeter wave imaging systems working in both pixel scanning mode and focal plane array mode and compare them to the results predicted by Fourier optics. It is shown that the difference can be 28% for the speckle contrast when the object is with certain roughness. The optical routine is that when the lens is four times'larger than the object, the imaging system can be considered as isoplanatic, thus Fourier optics can hold. Our simulation results imply that it may not be valid in indoor millimeter wave imaging systems. The goal of this paper is to draw some attention to the possibly large errors when modeling or designing the indoor millimeter wave imaging systems by Fourier optics directly. The mathematical discussions of the inaccuracies due to some approximations in Fourier optics can serve to understand and deal with aberrations.
Citation
Feng Qi, Vahid Tavakol, Dominique Schreurs, and Bart K. J. C. Nauwelaers, "Limitations of Approximations Towards Fourier Optics for Indoor Active Millimeter Wave Imaging Systems," Progress In Electromagnetics Research, Vol. 109, 245-262, 2010.
doi:10.2528/PIER10080510
References

1. Goodman, J. W., Introduction to Fourier Optics, McGraw-Hill, 1996.

2. Kakimoto, M., K. Matsuoka, T. Nishita, and H. Harashima, "Glare generation based on wave optics," 12th Pacific Conference on Computer Graphics and Applications, 133-142, 2004.

3. Flagello, D. G., T. Milster, and A. E. Rosenbluth, "Theory of high-NA imaging in homogeneous thin films," J. Opt. Soc. Am, Vol. 13, 53-64, 1996.

4. Goldsmith, P. R., C. T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, "Focal plane imaging systems for millimeter wavelengths," IEEE Trans. Microwave Theory and Tech., Vol. 41, 1664-1675, 1993.

5. Koers, G., I. Ocket, F. Qi, V. Tavakol, I. Jager, B. Nauwelaers, and J. Stiens, "Study of active millimeter-wave image speckle reduction by Hadamard phase pattern illumination," J. Opt. Soc. Am A, Vol. 25, 312-317, 2008.

6. Luo, Z., J. Xiong, and J. Yang, "A model-based analyzing and calculating of the focal plane array for passive millimeter wave imaging system," International Conference on Communications, Circuits and Systems Proceedings, 629-632, 2006.

7. Mezouari, S. and A. R. Harvey, "Validity of Fresnel and Franhofer approximations in scalar diffraction," Journal of Optics A: Pure and Applied Optics, 86-91, 2003.

8. Nauwelaers, B., I. Ocket, F. Qi, V. Tavakol, and D. Schreurs, "Is imaging with millimeter wave the same as optical imaging?," Third European Conference on the Use of Modern Information and Communication Technologies, 2008.

9. Thakur, J. P., W. G. Kim, and Y. H. Kim, "Large aperture low aberration aspheric dielectric lens antenna for W-band quasi-optics," Progress In Electromagnetics Research, Vol. 103, 57-65, 2010.

10. Dou, W. B., Z. L. Sun, and X. Q. Tan, "Fields in the focal space of symmetrical hyperbolic focusing lens," Progress In Electromagnetics Research, Vol. 20, 213-226, 1998.

11. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano convex lens," Progress In Electromagnetics Research, Vol. 83, 25-42, 2008.

12. Ghaffar, A., A. A. Rizvi, and Q. A. Naqvi, "Fields in the focal space of symmetrical hyperboloidal focusing lens," Progress In Electromagnetics Research, Vol. 89, 255-273, 2009.

13. Rhodes, W. T., "Simple procedure for the analysis of coherent imaging systems," Optics Letters, Vol. 19, 1559-1561, 1994.

14. Tichenor, D. A. and J. W. Goodman, "Coherent transfer function," J. Opt. Soc. Am,, 293-295, 1972.

15. Qi, F., V. Tavakol, D. Schreurs, and B. K. J. C. Nauwelaers, "Discussion on validity of hadamard speckle contrast reduction in coherent imaging system," Progress In Electromagnetics Research, Vol. 104, 125-143, 2010.

16. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.

17. Carpentieri, B., "Fast iterative solution methods in electromagnetic scattering," Progress In Electromagnetics Research, Vol. 79, 151-178, 2008.

18. Xin, Y. F. and P. L. Rui, "Adaptively accelerated GMRES fast fourier transform method for electromagnetic scattering," Progress In Electromagnetics Research, Vol. 81, 303-314, 2008.

19. Du, Y., Y. Luo, W.-Z. Yan, and J. A. Kong, "An electromagnetic scattering model for soybean canopy," Progress In Electromagnetics Research, Vol. 79, 209-223, 2008.

20. Lin, Z., X. Zhang, and G. Fang, "Theoretical model of electromagnetic scattering from 3D multi-layer dielectric media with slightly rough surfaces," Progress In Electromagnetics Research, Vol. 96, 37-62, 2009.

21. Du, Y. and B. Liu, "A numerical method for electromagnetic scattering from dielectric rough surface based on the stochastic second degree method," Progress In Electromagnetics Research, Vol. 97, 327-342, 2009.

22. Faghihi, F. and H. Heydari, "Time domain physical optics for the higher-order FDTD modeling in electromagnetic scattering from 3-D complex and combined multiple materials objects," Progress In Electromagnetics Research, Vol. 95, 87-102, 2009.

23. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.

24. Southwell, W. H., "Validity of the Fresnel approximation in the near field," J. Opt. Soc. Am, Vol. 71, 7-14, 1981.

25. Born, M. and E. Wolf, Principle of Fourier Optics, Cambridge University Press, 1999.