Vol. 110
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-26
Microwave Method for Thickness-Independent Permittivity Extraction of Low-Loss Dielectric Materials from Transmission Measurements
By
Progress In Electromagnetics Research, Vol. 110, 453-467, 2010
Abstract
A non-resonant microwave method has been proposed for complex permittivity determination of low-loss materials with no prior information of sample thickness. The method uses two measurement data of maximum/minimum value of the magnitude of transmission properties of the sample. An explicit expression for sample thickness and two expressions for inversion of the complex permittivity of the sample are derived. The method has been validated by transmission measurements at X-band (8.2--12.4 GHz) of a low-loss sample located into a waveguide sample holder.
Citation
Ugur Cem Hasar, "Microwave Method for Thickness-Independent Permittivity Extraction of Low-Loss Dielectric Materials from Transmission Measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010.
doi:10.2528/PIER10101208
References

1. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

2. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

3. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

4. Le Floch, J. M., F. Houndonougbo, V. Madrangeas, D. Cros, M. Guilloux-Viry, and W. Peng, "Thin film materials characterization using TE modes," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 549-559, 2009.
doi:10.1163/156939309787612293

5. Jin, H., S. R. Dong, and D. M. Wang, "Measurement of dielectric constant of thin film materials at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 809-817, 2009.
doi:10.1163/156939309788019831

6. Wu, Y. Q., Z. X. Tang, Y. H. Xu, and B. Zhang, "Measuring complex permeability of ferromagnetic thin films using microstrip transmission method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1303-1311, 2009.
doi:10.1163/156939309789108598

7. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104(5), 2002.

8. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608(7), 2004.

9. Hasar, U. C., "Accurate complex permittivity inversion from measurements of a sample partially filling a waveguide aperture," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 451-457, 2010.
doi:10.1109/TMTT.2009.2038444

10. Hasar, U. C., "A new microwave method for electrical characterization of low-loss materials," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 12, 801-803, 2009.
doi:10.1109/LMWC.2009.2033512

11. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 6, 1595-1601, 2009.
doi:10.1109/TMTT.2009.2020779

12. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606

13. Barroso, J. J. and A. L. De Paula, "Retrieval of permittivity and permeability of homogeneous materials from scattering parameters," Journal of Electromagnetic Waves and Applications, Vol. 24, 1563-1574, Aug. 2010.
doi:10.1163/156939310792149759

14. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09011702

15. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid dielectric materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 12, 788-790, Dec. 2008.
doi:10.1109/LMWC.2008.2007699

16. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid crowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.2528/PIERL08091402

17. Challa, R. K., D. Kajfez, J. R. Gladden, et al. "Permittivity measurement with a non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001

18. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, and K. H. Awadalla, "Microstrip antenna with corrugated ground plane surface as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
doi:10.2528/PIERB07112702

19. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

20. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 555-562, 2008.
doi:10.1163/156939308784150272

21. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
doi:10.2528/PIER09071409

22. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by timedomain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

23. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

24. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/refltion method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336

25. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for lowloss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032

26. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, 471-477, Feb. 2009.
doi:10.1109/TMTT.2008.2011242

27. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Technol., Vol. 19, No. 5, 055706(10), 2008.
doi:10.1088/0957-0233/19/5/055706

28. Hasar, U. C., "A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 9, 2129-2135, Sep. 2008.
doi:10.1109/TMTT.2008.2002229

29. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 6, 419-421, Jun. 2009.
doi:10.1109/LMWC.2009.2020045

30. Mahony, J. D., "Measurements to estimate the relative permittivity and loss tangent of thin, low-loss materials," IEEE Antennas Propag. Mag., Vol. 47, No. 3, 83-87, 2005.
doi:10.1109/MAP.2005.1532552

31. Muqaibel, A. H. and A. Safaai-Jazi, "A new formulation for characterization of materials based on measured insertion transfer function," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 8, 1946-1951, 2003.
doi:10.1109/TMTT.2003.815274

32. Hasar, U. C., "A generalized formulation for permittivity extraction of low-to-high-loss materials from transmission measurement," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 2, 411-418, Feb. 2010.
doi:10.1109/TMTT.2009.2038443

33. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
doi:10.2528/PIER09041405

34. Ness, J., "Broad-band permittivity measurements using the semi-automatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 11, 1222-1226, 1985.
doi:10.1109/TMTT.1985.1133198

35. Ball, J. A. R. and B. Horsfield, "Resolving ambiguity in broadband waveguide permittivity measurements on moist materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 390-392, 1998.
doi:10.1109/19.744179

36. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, No. 2, 337-341, Feb. 2009.
doi:10.1002/mop.24048

37. Xia, S., Z. Xu, and X. Wei, "Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency," Rev. Sci. Instrum., Vol. 80, No. 11, 114703(4), 2009.
doi:10.1063/1.3237244

38. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805

39. Engen, G. F. and C. A. Hoer, "`Thru-reflect-line': An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 27, No. 12, 987-993, Dec. 1979.
doi:10.1109/TMTT.1979.1129778

40. Von Hippel, A. R., Dielectric Materials and Applications, 134-135, 310-332, John Wiley & Sons, NY, 1954.