Vol. 112
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-25
Phenomenological Model Combining Dipole-Interaction Signal and Background Effects for Analyzing Modulated Detection in Apertureless Scanning Near-Field Optical Microscopy
By
Progress In Electromagnetics Research, Vol. 112, 415-440, 2011
Abstract
Modulation methods such as homodyne and heterodyne detections are employed in A-SNOM in order to eliminate serious background effects from scattering fields. Usually, the frequency-modulated detection signal in apertureless scanning near-field optical microscopy (A-SNOM) is generally analyzed using a simple dipole-interaction model based only on the near-field interaction. However, the simulated A-SNOM spectra obtained using such models are in poor agreement with the experimental results since the effects of background signals are ignored. Accordingly, this study proposes a new phenomenological model for analyzing the A-SNOM detection signal in which the effects of both the dipole-interaction and the background fields are taken into account. It is shown that the simulated A-SNOM spectra for 6H-SiC crystal and polymethylmethacrylate (PMMA) samples are in good agreement with the experimental results. The validated phenomenological model is used to identify the experimental A-SNOM parameter settings which minimize the effects of background signals and ensure that the detection signal approaches the pure near-field interaction signal. Finally, the phenomenological model is used to evaluate the effects of the residual stress and strain in a SiC substrate on the corresponding A-SNOM spectrum.
Citation
Chia-Chi Liao, and Yu-Lung Lo, "Phenomenological Model Combining Dipole-Interaction Signal and Background Effects for Analyzing Modulated Detection in Apertureless Scanning Near-Field Optical Microscopy," Progress In Electromagnetics Research, Vol. 112, 415-440, 2011.
doi:10.2528/PIER10111007
References

1. Pohl, D. W., S. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/=20," J. Appl. Phys., Vol. 44, 651-653, 1984.

2. Jackson, J. D., Classical Electrodynamics, Wiley, 1999.

3. Patane, S., G. G. Gucciardi, M. Labardi, and M. Allegrini, "Apertureless near-field optical microscopy," Rivita Del Nuovo Cimento, Vol. 27, 1-46, 2004.

4. Wessel, J., "Surface-enhanced optical microscopy," J. Opt. Soc. Am., Vol. 2, 1538-1540, 1985.
doi:10.1364/JOSAB.2.001538

5. Wickramasinghe, H. K. and C. C. Williams, "Apertureless near field optical microscope,", US Patent 4947034, 1990.

6. Inouye, Y. and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett., Vol. 19, 159-161, 1994.
doi:10.1364/OL.19.000159

7. Hillenbrand, R. and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett., Vol. 85, 3029-3032, 2000.
doi:10.1103/PhysRevLett.85.3029

8. Hillenbrand, R., B. Knoll, and F. Keilmann, "Pure optical contrast in scattering-type scanning near-field microscopy," J. Microsc., Vol. 202, 77-83, 2000.
doi:10.1046/j.1365-2818.2001.00794.x

9. Knoll, B. and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun., Vol. 182, 321-328, 2000.
doi:10.1016/S0030-4018(00)00826-9

10. Hudlet, S., S. Aubert, A. Bruyant, R. Bachelot, P. M. Adam, J. L. Bijeon, G. Lerondel, P. Royer, and A. A. Stashkevich, "Apertureless near field optical microscopy: A contribution to the understanding of the signal detected in the presence of background field," Opt. Commun., Vol. 230, 245-251, 2004.
doi:10.1016/j.optcom.2003.11.029

11. Formanek, F., Y. D. Wilde, and L. Aigouy, "Analysis of the measured signals in apertureless near-field optical microscopy," Ultramicroscopy, Vol. 103, 133-139, 2005.
doi:10.1016/j.ultramic.2004.11.004

12. Gucciardi, P. G., G. Bachelier, and M. Allegrini, "Far-field background suppression in tip-modulated apertureless near-field optical microscopy," J. Appl. Phys., Vol. 99, No. 124309, 2006.

13. Stefanon, I., S. Blaize, A. Bruyant, S. Aubert, G. Lerondel R. Bachelot, and P. Royer, "Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope," Opt. Express, Vol. 13, 15782-15796, 2007.

15. Chuang, C. H. and Y. L. Lo, "An analysis of heterodyne signals in apertureless scanning near-field optical microscopy," Opt. Express, Vol. 16, 17982-18003, 2008.
doi:10.1364/OE.16.017982

16. Chuang, C.-H. and Y.-L. Lo, "Signal analysis of apertureless scanning near-field optical microscopy with superlens," Progress In Electromagnetics Research, Vol. 109, 83-106, 2010.
doi:10.2528/PIER10081102

17. Cvitkovic, A., N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express, Vol. 15, 8550-8565, 2007.
doi:10.1364/OE.15.008550

18. Xie, H., Xie, H., F. M. Kong, and K. Li, "The electric field enhancement and resonance optical antenna composed of AU nanoparicles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 534-547, 2009.
doi:10.1163/156939309787612419

19. Hamid, A.-K. and F. R. Cooray, "Scattering by a perfect electromagnetic conducting elliptic cylinder," Progress In Electromagnetics Research Letters, Vol. 10, 59-67, 2009.
doi:10.2528/PIERL09060301

20. Mohamed, M. A., E. F. Kuester, M. Piket-May, and C. L. Holloway, "The field of an electric dipole and the polarizability of a conducting object embedded in the interface between dielectric materials," Progress In Electromagnetics Research B, Vol. 16, 1-20, 2009.
doi:10.2528/PIERB09050408

21. Eroglu, A. and J. K. Lee, "Far field radiation from an arbitrarily oriented hertzian dipole in an unbounded electricaly gyrotropic medium," Progress In Electromagnetics Research, Vol. 89, 291-310, 2009.
doi:10.2528/PIER08122202

22. Kalaee, P. and J. Rashed-Mohassel, "Investigation of dipole radiation pattern above a chiral media using 3D bi-FDTD approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 75-86, 2009.
doi:10.1163/156939309787604706

23. Zhang, S., S.-X. Gong, Y. Guan, J. Ling, and B. Lu, "A new approach for synthesizing both the radiation and scattering patterns of linear dipole antenna array," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 861-870, 2010.
doi:10.1163/156939310791285137

24. Laviada-Martinez, J., Y. Alvarez Lopez, and F. Las-Heras, "Efficient determination of the near-field in the vicinity of an antenna for the estimation of its safety perimeter," Progress In Electromagnetics Research, Vol. 103, 371-391, 2010.
doi:10.2528/PIER10031807

25. Huber, A. J., A. Ziegler, T. Köck, and R. Hillenbrand, "Infrared nanoscopy of strained semiconductors," Nature Nanotechnology, Vol. 4, 153-157, 2008.

26. Aizpurua, J., T. Taubner, F. J. García de Abajo, M. Brehm and R. Hillenbrand, "Substrate-enhanced infrared near-field spectroscopy," Opt. Express, Vol. 16, 1529-1545, 2008.
doi:10.1364/OE.16.001529

27. Walford, J. N., J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, "Influence of tip modulation on image formation in scanning near-field optical microscopy," J. Appl. Phys., Vol. 89, 5159-5169, 2001.
doi:10.1063/1.1359153

28. Gomez, L., R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, "Apertureless scanning near-field optical microscopy: A comparison between homodyne and heterodyne approaches," J. Opt. Soc. Am. B, Vol. 23, 823-833, 2006.
doi:10.1364/JOSAB.23.000823

29. Lo, Y. L. and C. H. Chuang, "New synthetic-heterodyne demodulation for an optical fiber interferometry," IEEE J. Quantum Electro., Vol. 37, 658-663, 2001.

30. Bek, A., "Apertureless SNOM: A new tool for nano-optics,", Ph.D. Dissertation, Max Planck Institute for Solid State Research, Germany, 2004.

31. Palik, E. D., Handbook of Optical Constants of Solids, Academic, New York, 1985.

32. Harima, H., S. Nakashima, and T. Uemura, "Raman-scattering from anisotropic LO-phonon-plasmon-coupled mode in n-type 4H-SiC and 6H-SiC," J. Appl. Phys., Vol. 78, 1996-2005, 1995.
doi:10.1063/1.360174

33. Huber, A., N. Ocelic, T. Taubner, and R. Hillenbrand, "Nanoscale resolved infrared probing of crystal structure and of plasmonCphonon coupling," Nano Lett., Vol. 6, 774-778, 2006.
doi:10.1021/nl060092b

34. Liu, J. and Y. K. Vohra, "Raman modes of 6H polytype of siliconcarbide to ultrahigh pressures --- A comparison with silicon and diamond," Phys. Rev. Lett., Vol. 72, 4105-4108, 1994.
doi:10.1103/PhysRevLett.72.4105