Vol. 113

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-02-01

Calculation and Optimization of Electromagnetic Resonances and Local Intensity Enhancements for Plasmon Metamaterials with Sub-Wavelength Double-Slots

By Lin Han, Shuqi Chen, Axel Schulzgen, Yong Zeng, Feng Song, Jian-Guo Tian, and Nasser Peyghambarian
Progress In Electromagnetics Research, Vol. 113, 161-177, 2011
doi:10.2528/PIER10120604

Abstract

We propose two metamaterials with sub-wavelength double-slots --- single-side double-slot metamaterial and double-side double-slot metamaterial. The dependence of the electromagnetic resonances and local intensity enhancements on the structural parameters is studied by the finite-difference time-domain technique and the finite element method. Results show that the central-arm of a double-slot structure strongly influences frequency and local intensities at both high- and low-frequency resonances. Very strong field localization can be achieved at the high-frequency resonance and its particular distribution can be well controlled by the width of the central-arm. A double-side double-slot structure can be utilized to separately enhance the high-frequency resonance, while suppressing the low-frequency resonance. The simulation results are discussed in terms of plasmon resonances.

Citation


Lin Han, Shuqi Chen, Axel Schulzgen, Yong Zeng, Feng Song, Jian-Guo Tian, and Nasser Peyghambarian, "Calculation and Optimization of Electromagnetic Resonances and Local Intensity Enhancements for Plasmon Metamaterials with Sub-Wavelength Double-Slots," Progress In Electromagnetics Research, Vol. 113, 161-177, 2011.
doi:10.2528/PIER10120604
http://www.jpier.org/PIER/pier.php?paper=10120604

References


    1. Joannopoulos, J. D., Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.

    2. Shalaev, V. M., W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett., Vol. 30, 3356-3358, 2005.
    doi:10.1364/OL.30.003356

    3. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett., Vol. 30, 3198-3200, 2005.
    doi:10.1364/OL.30.003198

    4. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, 2005.
    doi:10.1103/PhysRevLett.95.137404

    5. Sabah, C., "Tunable metamaterial design composed of triangular split ring resonator and wire strip for S- and C- microwave bands," Progress In Electromagnetics Research B, Vol. 22, 341-357, 2010.
    doi:10.2528/PIERB10051705

    6. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, 2943-2945, 2004.
    doi:10.1063/1.1695439

    7. Katsarakis, N., G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, "Magnetic response of split-ring resonators in the far-infrared frequency regime," Opt. Lett., Vol. 30, 1348-1350, 2005.
    doi:10.1364/OL.30.001348

    8. Linden, S., C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science, Vol. 306, 1351-1353, 2004.
    doi:10.1126/science.1105371

    9. Marqués, R., F. Martín, and M. Sorolla, Metamaterials with Negative Parameters, Wiley, New York, 2008.

    10. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University, New York, 2009.

    11. Zeng, Y., C. Dineen, and J. V. Moloney, "Magnetic dipole moments in single and coupled split-ring resonators," Phys. Rev. B, Vol. 81, 075116, 2010.
    doi:10.1103/PhysRevB.81.075116

    12. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, 1513-1515, 2009.
    doi:10.1126/science.1177031

    13. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photonics, Vol. 3, 157-162, 2009.
    doi:10.1038/nphoton.2009.4

    14. Sersic, I., M. Frimmer, E. Verhagen, and A. F. Koenderink, "Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays," Phys. Rev. Lett., Vol. 103, 213902, 2009.
    doi:10.1103/PhysRevLett.103.213902

    15. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004.
    doi:10.1126/science.1096796

    16. Houck, A. A., J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett., Vol. 90, 137401, 2003.
    doi:10.1103/PhysRevLett.90.137401

    17. Seddon, N. and T. Bearpark, "Observation of the inverse Doppler effect," Science, Vol. 302, 1537-1540, 2003.
    doi:10.1126/science.1089342

    18. Lu, J., T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B. I. Wu, J. A. Kong, and M. Chen, "Cerenkov radiation in materials with negative permittivity and permeability," Opt. Express, Vol. 11, 723-734, 2003.
    doi:10.1364/OE.11.000723

    19. Duan, Z.-Y., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
    doi:10.2528/PIER08121604

    20. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    21. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    22. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
    doi:10.1126/science.1126493

    23. Navarro-Cia, M., J. M. Carrasco, M. Beruete, and F. J. Falcone, "Ultra-wideband metamaterial filter based on electroinductive-wave coupling between microstrips," Progress In Electromagnetics Research Letters, Vol. 12, 141-150, 2009.
    doi:10.2528/PIERL09102106

    24. NaghshvarianJahromi, M., "Novel compact meta-material tunable quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2371-2382, 2010.
    doi:10.1163/156939310793675808

    25. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics Nanostruct. Fundam. Appl., Vol. 6, 87-95, 2008.
    doi:10.1016/j.photonics.2007.07.013

    26. Kwon, D.-H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys., Vol. 10, 115023, 2008.
    doi:10.1088/1367-2630/10/11/115023

    27. Zharov, A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Phys. Rev. Lett., Vol. 91, 037401, 2003.
    doi:10.1103/PhysRevLett.91.037401

    28. Liu, Y., G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett., Vol. 99, 153901, 2007.
    doi:10.1103/PhysRevLett.99.153901

    29. Chen, S., L. Han, A. Schülzgen, H. Li, L. Li, J. V. Moloney, and N. Peyghambarian, "Local electric field enhancement and polarization effects in a surface-enhanced raman scattering fiber sensor with chessboard nanostructure," Opt. Express, Vol. 16, 13016-13023, 2008.
    doi:10.1364/OE.16.013016

    30. Zeng, Y., Q. Wu, and D. H. Werner, "Electrostatic theory for designing lossless negative permittivity metamaterials," Opt. Lett., Vol. 35, 1431-1433, 2010.
    doi:10.1364/OL.35.001431

    31. Klein, M. W., C. Enkrich, M. Wegener, and S. Linden, "Second-harmonic generation from magnetic metamaterials," Science, Vol. 313, 502-504, 2006.
    doi:10.1126/science.1129198

    32. Taflove, A. and S. C. Hagness, Computational Electrodynamics --- The Finite-difference Time-domain Method, Artech House, Boston, 2005.

    33. Palik, E. D., Handbook of Optical Constants of Solids, Academic, New York, 1985.

    34. Ditlbacher, H., A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett., Vol. 95, 257403, 2005.
    doi:10.1103/PhysRevLett.95.257403

    35. Rockstuhl, C., F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Opt. Express, Vol. 14, 8827-8836, 2006.
    doi:10.1364/OE.14.008827

    36. Rockstuhl, C., T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, "Resonances of split-ring resonator metamaterials in the near infrared," Appl. Phys. B, Vol. 84, 219-227, 2006.
    doi:10.1007/s00340-006-2205-2

    37. Szabó, Z., G.-H. Park, R. Hedge, and E.-P. Li, "A unique extraction of metamaterial parameters based on kramers-kronig relationship," IEEE T. Microw. Theory, Vol. 58, 2646-2653, 2010.
    doi:10.1109/TMTT.2010.2065310