Vol. 113

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-02-06

Generation of Nanosecond Optical Pulses with Controlled Repetition Rate Using in-Cavity Intensity Modulated Brillouin Erbium Fiber Laser

By Hussein Eissa Kotb, Mohamed Yehia Shalaby, and Mahmoud Hanafi Ahmed
Progress In Electromagnetics Research, Vol. 113, 313-331, 2011
doi:10.2528/PIER10121901

Abstract

A multimode Brillouin Erbium Fiber Laser BEFL, at 1550 nm band, with in-cavity intensity modulation is demonstrated. The output of the laser is in the form of nanosecond pulses. The longitudinal mode separation is increased, which results in both reducing the number of oscillation modes and, at the same time, changing the output pulses repetition rate to be multiples of the round trip cavity frequency. It is also demonstrated that the number of modes is greatly reduced by the combination of active mode locking and the group velocity dispersion arising from the change in the refractive index at each mode due to the change in its gain within the Brillouin gain bandwidth. A case of a quasi single mode is reached where the output is nearly CW with very low sinusoidal modulation index.

Citation


Hussein Eissa Kotb, Mohamed Yehia Shalaby, and Mahmoud Hanafi Ahmed, "Generation of Nanosecond Optical Pulses with Controlled Repetition Rate Using in-Cavity Intensity Modulated Brillouin Erbium Fiber Laser," Progress In Electromagnetics Research, Vol. 113, 313-331, 2011.
doi:10.2528/PIER10121901
http://www.jpier.org/PIER/pier.php?paper=10121901

References


    1. Agrawal, G. P., Non Linear Fiber Optics, 4th Ed., Chapter 9, Elsevier, 2006.

    2. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
    doi:10.2528/PIER07051102

    3. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
    doi:10.2528/PIER07040201

    4. Cowle, G. J. and D. Yu. Stepanov, "Hybrid Brillouin/Erbium fiber laser," Optics Letters, Vol. 21, No. 16, 1250-1252, August 1996.
    doi:10.1364/OL.21.001250

    5. Harun, S. W., N. Tamchek, P. Poopalan, and H. Ahmad, "L-band Brillouin-Erbium fiber laser," Laser Physics, Vol. 13, No. 9, 1161-1165, 2003.

    6. Abdullah, M. K., S. Shaharudin, M. A. Mahdi, and R. Endut, "A widely tunable hybrid Brillouin-Erbium fiber laser (BEFL) system," Optics & Laser Technology, Vol. 36, 567-570, 2004.
    doi:10.1016/j.optlastec.2004.01.002

    7. Samsuri, N. M., A. K. Zamzuri, M. H. Al-Mansoor, A. Ahmad, and M. A. Mahdi, "Brillouin-Erbium fiber laser with enhanced feedback coupling using common Erbium gain section," Optics Express, Vol. 16, No. 21, 16475-16480, October 2008.
    doi:10.1364/OE.16.016475

    8. Cowle, G. J. and D. Yu. Stepanov, "Multiple wavelength generation with brillouin Erbium fiber lasers," IEEE Photonics Technology Letters, Vol. 8, No. 11, 1465-1467, November 1996.
    doi:10.1109/68.541551

    9. Abd-Rahman, M. K., M. K. Abdullah, and H. Ahmad, "Multiwavelength, bidirectional operation of twin-cavity Brillouin/Erbium fiber laser," Optics Comm., Vol. 181, 135-139, July 2000.

    10. Chen, D. and B. Sun, "Multiwavelength fiber optical parametric oscillator based on a highly nonlinear fiber and a Sagnac loop filter," Progress In Electromagnetics Research, Vol. 106, 163-176, 2010.
    doi:10.2528/PIER10061506

    11. Haus, H. A., "Mode-locking of lasers," IEEE J. Selected topics in Quantum Electron., Vol. 6, No. 6, 1173-1185, November/December 2000.
    doi:10.1109/2944.902165

    12. Zhou, Y., "The novel active mode-locking 402.5MHz repetition rate pico-second laser based on PLL structure," PIERS Proceedings, 1557-1559, Xian, China, March 22-26, 2010.

    13. Shahi, S., S. W. Harun, K. Dimyati, and H. Ahmed, "Brillouin fiber laser with significantly reduced gain medium length operating in L-band region," Progress In Electromagnetics Research Letters, Vol. 8, 143-149, 2009.
    doi:10.2528/PIERL09032501

    14. Zheng, L. G. and W. X. Zhang, "Study on bandwidth of 2-D dielectric PBG material," Progress In Electromagnetics Research, Vol. 41, 83-106, 2003.
    doi:10.2528/PIER02010804

    15. El-Dahshory, M. A., A. M. Attiya, and E. A. Hashish, "Design equations of two dimensional dielectric photonic bandgap structures," Progress In Electromagnetics Research, Vol. 74, 319-340, 2007.
    doi:10.2528/PIER07051702

    16. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W. L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
    doi:10.2528/PIERL09061804

    17. Rostami, A. and S. Matloub, "Band structure and dispersion properties of photonic quasicrystals," Progress In Electromagnetics Research M, Vol. 9, 65-78, 2009.
    doi:10.2528/PIERM09091002

    18. Li, J. M., T. L. Dong, and G. J. Shan, "Enhancement of electromagnetic force by localized fields in one dimensional photonic crystal ," Progress In Electromagnetics Research M, Vol. 10, 59-70, 2009.
    doi:10.2528/PIERM09102202

    19. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
    doi:10.2528/PIER09092309

    20. Chen, D., M.-L. V. Tse, and H. Y. Tam, "Super-lattice structure photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 11, 53-64, 2010.
    doi:10.2528/PIERM09120701

    21. Chau, Y.-F., C.-Y. Liu, and H.-H. Yeh, "A comparative study of high birefringence and low confinement loss photonic crystal ¯ber employing elliptical air holes in fiber cladding with tetragonal lattice," Progress In Electromagnetics Research B, Vol. 22, 39-52, 2010.
    doi:10.2528/PIERB10042405

    22. Chen, D., M.-L. V. Tse, and H. Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of sub-wavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
    doi:10.2528/PIER10042706

    23. Shen, G. F., X. M. Zhang, H. Chi, and X. F. Jin, "Microwave/millimeter-wave generation using multiwavelength photonic crystal fiber Brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
    doi:10.2528/PIER07112202

    24. Reddy, K. P. J. and J. A. Tatum, "Dynamics of active modelocking in broad-band continuous wave lasers," IEEE J. of Quantum Electronics, Vol. 29, No. 5, 1407, May 1993.
    doi:10.1109/3.236155

    25. Kappe, P., M. Ostermeyer, and R. Menzel, "Active modelocking of a phase conjugating SBS laser oscillator," Appl. Phys. B, Vol. 80, 49-54, 2005.
    doi:10.1007/s00340-004-1700-6

    26. Zarinetchi, F., S. P. Smith, and S. Ezekiel, "Stimulated Brillouin fiber optic gyroscope," Optics Letters, Vol. 16, No. 4, 229-231, February 1991.
    doi:10.1364/OL.16.000229

    27. Black, E. D., "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys., Vol. 69, No. 1, 79-87, January 2001.
    doi:10.1119/1.1286663

    28. Song, K. Y., M. G. Herraez, and L. Thevenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Optics Express, Vol. 13, No. 1, 82-88, January 2005.
    doi:10.1364/OPEX.13.000082

    29. Okawachi, Y., M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber ," Phys. Rev. Lett., Vol. 94, 153902, April 2005.
    doi:10.1103/PhysRevLett.94.153902

    30. Pandey, G. N., K. B. Thapa, S. K. Srivastava, and S. P. Ojha, "Band structures and abnormal behavior of one dimensional photonic crystals containing negative index materials ," Progress In Electromagnetics Research M, Vol. 2, 15-36, 2008.
    doi:10.2528/PIERM08021501