Vol. 113

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

On the Fundamental Equations of Electromagnetism in Finslerian Spacetimes

By Nicoleta Voicu
Progress In Electromagnetics Research, Vol. 113, 83-102, 2011


In spaces with Finslerian geometry, the metric tensor depends on the directional variable, which leads to a dependence on this variable of the electromagnetic tensor and of the 4-potential. In this paper, we investigate some of the consequences of this fact, regarding the basic notions and equations of classical electromagnetic field theory.


Nicoleta Voicu, "On the Fundamental Equations of Electromagnetism in Finslerian Spacetimes," Progress In Electromagnetics Research, Vol. 113, 83-102, 2011.


    1. Asanov, G. S., Finsler Geometry, Relativity and Gauge Theories, Reidel, Dordrecht, 1985.

    2. Balan, V. and P. C. Stavrinos, "Finslerian (α,β)-metrics in weak gravitational models," Finsler and Lagrange Geometries, M. Anastasiei and P. L. Antonelli, Eds., 259-268, Kluwer Acad Publishers, 2003.

    3. Brinzei (Voicu), N. and S. Siparov, Equations of Electromagnetism in Some Special Anisotropic Spaces, Dec. 2008.

    4. Bogoslovsky, G. Y., "A viable model of locally anisotropic space-time and the Finslerian generalization of the relativity theory," Fortschr. Phys., Vol. 42, No. 2, 143-193, 1994.

    5. Bogoslovsky, G. Y. and H. F. Goenner, "Concerning the generalized Lorentz symmetry and the generalization of the Dirac equation ," Phys. Lett. A, Vol. 323, 40-47, 2004.

    6. Bao, D., S. S. Chern, and Z. Shen, An Introduction to Riemann-Finsler Geometry, (Graduate Texts in Mathematics, 200) , Springer Verlag, 2000.

    7. Dahl, M., "Electromagnetic Gaussian beams and Riemannian geometry ," Progress In Electromagnetics Research, Vol. 60, 265-291, 2006.

    8. Ivancevic, V. G. and T. T. Ivancevic, Applied Differential Geometry. A Modern Introduction, WSP, 2007.

    9. Kachalov, A. P., "Quasijets in anisotropic media, Finsler geometry, and Fermi coordinates," Journal of Math. Sciences, Vol. 142, No. 6, 2546-2558, 2007.

    10. Miron, R. and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, FTPH, No. 59, Kluwer Acad. Publ., 1994.

    11. Landau, L. D. and E. M. Lifschiz, Field Theory, 8th Ed., Fizmatlit, Moscow, 2006.

    12. Miron, R., R. Rosca, M. Anastasiei, and K. Buchner, "New aspects in Lagrangian relativity," Found. of Phys. Lett., Vol. 2, No. 5, 141-171, 1992.

    13. Miron, R. and M. Radivoiovici-Tatoiu, "A Lagrangian theory of electromagnetism," Seminarul de Mecanica, 1-55, Timisoara, 1988.

    14. Miron, R., The Geometry of Ingarden Spaces, Vol. 54, No. 2, 131-147, Rep. on Math. Phys., 2007.

    15. Rutz, S., "A Finsler generalisation of Einstein's vacuum field equations," General Relativity and Gravitation, Vol. 25, No. 11, 1139-1158, 1993.

    16. Siparov, S., "On the interpretation of the classical GRT tests and cosmological constant in anisotropic geometrodynamics ,", 2009.

    17. Shen, Z., Lectures on Finsler Geometry, World Scientific, 2001.

    18. Udriste, C. and V. Balan, Differential Operators and Convexity on Vector Bundles, Endowed with (h; v)-metrics, Section I, Vol. 43, No. 1, 37{50, An. St. Univ. ``AL.I. Cuza", 1997.

    19. Vacaru, S., P. Stavrinos, E. Gaburov, and D. Gonta, Clifford and Riemann Finsler Structures in Geometric Mechanics and Gravity, Geometry Balkan Press, Bucharest, 2006.

    20. Voicu, N. and S. Siparov, "A new approach to electromagnetism in anisotropic spaces," BSG Proc., Vol. 17, 250-260, 2010.

    21. Watanabe, T. and M. Hayashi, General Relativity with Torsion, arXiv: gr -qc/0409029.

    22. Li, X. and Z. Chang, "Towards a gravitation theory in Berwald-Finsler space," Chinese Phys. C, Vol. 34, 28, 2010.

    23. Von Brzeski, J. G. and V. von Brzeski, "Topological wave-length shifts [electromagnetic field in Lobachevskian geometry]," Progress In Electromagnetics Research, Vol. 39, 281-298, 2003.

    24. Carcione, J. M., "Simulation of electromagnetic diffusion in anisotropic media," Progress In Electromagnetics Research B, Vol. 26, 425-450, 2010.

    25. Cheng, X., H. Chen, B.-I. Wu, and J. A. Kong, "Cloak for bianisotropic and moving media," Progress In Electromagnetics Research, Vol. 89, 199-212, 2009.

    26. Gratus, J. and R. W. Tucker, "Covariant constitutive relations, Landau damping and non-stationary inhomogeneous plasmas," Progress In Electromagnetics Research M, Vol. 13, 145-156, 2010.

    27. Lindell, I. V., "Class of electromagnetic sq-media," Progress In Electromagnetics Research, Vol. 110, 371-382, 2010.

    28. Lindell, I. V., "Electromagnetic wave equation in differential-form representation ," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.

    29. Slob, E. C. and K. Wapenaar, "Retrieving the Green's function from cross correlation in a bianisotropic medium," Progress In Electromagnetics Research, Vol. 93, 255-274, 2009.