Vol. 113

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-01-28

Hybrid Tangential Equivalence Principle Algorithm with MLFMA for Analysis of Array Structures

By Hanru Shao, Jun Hu, Zai-Ping Nie, Guo Han, and Shiquan He
Progress In Electromagnetics Research, Vol. 113, 127-141, 2011
doi:10.2528/PIER10122212

Abstract

In this paper, a novel technique is proposed to solve the electromagnetic scattering by large finite arrays by combining the tangential equivalence principle algorithm (T-EPA) with multilevel fast multipole algorithm (MLFMA). The equivalence principle algorithm (EPA) is a kind of domain decomposition scheme for the electromagnetic scattering and radiation problems based on integral equation (IE). For the array with same elements, only one scattering matrix needs to be constructed and stored. T-EPA has better accuracy than the original EPA. But the calculating for the impedance matrix in T-EPA is still time consuming. MLFMA is proposed to speed up the matrix-vector multiplication in T-EPA. Numerical results are shown to demonstrate the accuracy and efficiency of the proposed technique.

Citation


Hanru Shao, Jun Hu, Zai-Ping Nie, Guo Han, and Shiquan He, "Hybrid Tangential Equivalence Principle Algorithm with MLFMA for Analysis of Array Structures," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011.
doi:10.2528/PIER10122212
http://www.jpier.org/PIER/pier.php?paper=10122212

References


    1. Losada, V., R. R. Boix, and F. Medina, "Radar cross section of stacked circular microstrip patches on anisotropic and chiral substrates," IEEE Trans. Antenn. Propag., Vol. 51, No. 5, 1136-1139, May 2003.
    doi:10.1109/TAP.2003.811528

    2. Gustafsson, M., "RCS reduction of integrated antenna arrays with resistive sheets," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 27-40, 2006.
    doi:10.1163/156939306775777323

    3. Yeo, J. and D. Kim, "Novel tapered AMC structures for backscattered RCS reduction," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 697-709, 2009.
    doi:10.1163/156939309788019804

    4. Wang, W. T., S. X. Gong, X. Wang, H. W. Yuan, J. Ling, and T. T. Wan, "RCS reduction of array antenna by using bandstop FSS reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1505-1514, 1995.

    5. Pozar, D. M. and D. H. Schaubert, "Analysis of an infinite array of rectangular micristrip patches with idealized feed," IEEE Trans. Antenn. Propag., Vol. 35, No. 10, 1101, Oct. 1984.

    6. Liu, Z. F., P. S. Kooi, L. W. Li, M. S. Leong, and T. S. Yeo, "A method of moments analysis of a microtrip phased array in three layered structures," Progress In Electromagnetics Research, Vol. 31, 155-179, 2001.
    doi:10.2528/PIER00062201

    7. Mcgrath, D. T. and V. P. Pyati, "Phased array antenna analysis with the hybrid finite element method," IEEE Trans. Antennas Propag., Vol. 42, No. 12, 1625-1630, Dec. 1994.
    doi:10.1109/8.362811

    8. Hua, Y. and J. Li, "Analysis of longitudinal shunt waveguide slots using FEBI," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2041-2046, 2009.
    doi:10.1163/156939309789932520

    9. Ozgun, O. and M. Kuzuoglu, "Finite element analysis of electromagnetic scattering problems via iterative leap-field domain decomposition method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 251-266, 2008.
    doi:10.1163/156939308784160668

    10. Lee, S. C., M. N. Vouvakis, and J. F. Lee, "A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays ," J. Comput. Phys., Vol. 203, 1-21, Feb. 2005.

    11. Holloway, C. L., P. M. McKenna, R. A. Dalke, R. A. Perala, and C. L. Devor, "Time-domain modeling, characterization, and measurements of anechoic and semi-anechoic electromagnetic test chambers," IEEE Trans. Electro. Compat., Vol. 44, No. 1, 102-118, Feb. 2002.
    doi:10.1109/15.990716

    12. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antenn. Propag., Vol. 45, 1488-1493, Oct. 1997.
    doi:10.1109/8.633855

    13. Hu, J. and Z. P. Nie, "Multilevel fast multipole algorithm for solving scattering from 3-D electrically large object," Chinese Journal of Radio Science, Vol. 19, 509-514, May 2004.

    14. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetics Research, Vol. 55, 47-78, 2005.
    doi:10.2528/PIER05021001

    15. Ouyang, J., J., F. Yang, S. W. Yang, and Z. P. Nie, "Exact simulation method VSWIE+MLFMA for analysis radiation pattern of pro-feed conformal microstrip antennas and the application of synthesis radiation pattern of conformal array mounted on finite-length PEC circular cylinder with des," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1995-2008, 2007.
    doi:10.1163/156939307783152803

    16. Hu, J., Z. P. Nie, L. Lei, and L. J. Tian, "Fast solution of scattering from conducting structures by local MLFMA based on improved electric field integral equation," IEEE Trans. Electromagn. Compat., Vol. 50, No. 4, Nov. 2008.

    17. Ping, X. W., T. J. Cui, and W. B. Lu, "The combination of bcgstab with multifrontal algorithm to solve FEBI-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
    doi:10.2528/PIER09050604

    18. Peng, Z., X. Q. Sheng, and F. Yin, "An efficient twofold iterative algorithm of FE-BI-MLFMA using multilevel inverse-based ilu preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.
    doi:10.2528/PIER09060305

    19. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in elemtromagnetic," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
    doi:10.2528/PIER10041603

    20. Blesznski, E. and M. Bleszynski, "AIM: Adaptive integral method for solving large scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, 1225-1251, Sep. 1996.
    doi:10.1029/96RS02504

    21. Hu, L., L. W. Li, and T. S. Yeo, "Analysis of scattering by large inhomogeneous bi-anisotropic objects using AIM," Progress In Electromagnetics Research, Vol. 99, 21-36, 2009.
    doi:10.2528/PIER09101204

    22. Seo, S. M. and J.-F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Transactions on Magnetics, Vol. 41, No. 9, 1476-1479, Oct. 1997.

    23. Yin, J. L., J. Hu, X. F. Que, and Z. P. Nie, "A fast IE-FFT solution of 3D coating scatterers," Micro. Opt. Tech. Lett., Vol. 52, No. 1, 241-244, Jan. 2010.
    doi:10.1002/mop.24846

    24. Li, M. K. and W. C. Chew, "A domain decomposition scheme based on equivalence theorem," Micro. Opt. Tech. Lett., Vol. 48, No. 9, 1853-1857, Sep. 2006.
    doi:10.1002/mop.21777

    25. Li, M. K. and W. C. Chew, "Using tap basis to implement the equivalence principle algorithm for domain decomposition in integral equations," Micro. Opt. Tech. Lett., Vol. 48, No. 11, 2218-2222, Nov. 2006.
    doi:10.1002/mop.21933

    26. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antenn. Propag., Vol. 55, No. 1, 130-138, Jan. 2007.
    doi:10.1109/TAP.2006.888453

    27. Li, M. K. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antenn. Propag., Vol. 56, No. 8, 2389-2397, Aug. 2008.
    doi:10.1109/TAP.2008.926785

    28. Xiao, G. B., J. F. Mao, and B. Yuan, "Generalized transition matrix for arbitrarily shaped scatterers or scatterer groups," IEEE Trans. Antenn. Propag., Vol. 56, No. 12, 3723-3732, Dec. 2008.
    doi:10.1109/TAP.2008.2007283

    29. Yla-Oijala, P. and M. Taskinen, "Electromagnetic scattering by large and complex structures with surface equivalence principle algorithm," Waves in Random and Complex Media, Vol. 19, No. 1, Feb. 2009.
    doi:10.1080/17455030802585365

    30. Yla-Oijala, P. and M. Taskinen, "Solving electromagnetic scattering by multiple targets with surface equivalence principle algorithm," 3rd European Conference on Antenna and Propagation, 88-92, Mar. 2009.

    31. Yla-Oijala, P., O. Ergul, L. Gurel, and M. Taskinen, "Efficient surface integral equation methods for the analysis of complex metamaterial structures ," 3rd European Conference on Antenna and Propagation, 1560-1564, Mar. 2009.

    32. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antenn. Propag., Vol. 45, No. 3, 329-342, Mar. 1997.
    doi:10.1109/8.558649

    33. Hu, J., Z. P. Nie, and L. Lin, Solving 3-D electromagnetic scattering from conducting object by MLFMA with curvilinear RWG basis , IEEE Antennas and Propagation Society Int. Symp., 460-463, 2003.

    34. Lu, C. C. and W. C. Chew, "A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets," IEEE Trans. Antenn. Propag., Vol. 48, No. 12, 1866-1868, Dec. 2000.
    doi:10.1109/8.901277

    35. Yuan, N., T. S. Yeo, X. C. Nie, and L. W. Li, "RCS computation of composite conductiong-dielectric objects with junctions using the hybrid volume-surface integral equation," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 1, 19-36, 2005.
    doi:10.1163/1569393052955107

    36. Velamparambil, S., W. C. Chew, and J. M. Song, "10 Million unknowns: Is it that big?," IEEE Trans. Antenn. Propag., Vol. 45, No. 2, 43-58, Apr. 1997.