Vol. 112
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-20
A Wimedia Compliant CMOS RF Power Amplifier for Ultra-Wideband (UWB) Transmitter
By
Progress In Electromagnetics Research, Vol. 112, 329-347, 2011
Abstract
A WiMedia compliant CMOS RF power amplifier (PA) for ultra-wideband (UWB) transmitter in the 3.1 to 4.8 GHz band is presented in this paper. The proposed two-stage PA employs a cascode topology on the first stage as driver while the second stage is a simple common source (CS) amplifier. In order to improve the efficiency and output power, the output impedance of the driver amplifier (first stage) is optimized so that it falls on the source-pull contours of the second stage amplifier. On-wafer measurement on the fabricated prototype showed a maximum power gain of +15.8 dB, 0.6 dB gain flatness, +11.3 dBm of output 1 dB gain compression and up to a maximum of 17.3% power added efficiency (PAE) at 4 GHz using a 50 Ω load termination, while consuming only 25.7 mW from a 1.8 V supply voltage. Measurement results obtained are used to create a non-linear powerdependent S-parameter (P2D) model for wideband input and output matching optimizations and co-simulations with the UWB modulated test signals. Using the created P2D model, the PA achieved a maximum output channel power of +3.48 dBm with an error vector magnitude (EVM) of −23.1 dB and complied with the WiMedia mask specifications.
Citation
Sew-Kin Wong, Fabian Kung Wai Lee, Siti Maisurah, and Mohd Nizam Bin Osman, "A Wimedia Compliant CMOS RF Power Amplifier for Ultra-Wideband (UWB) Transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011.
doi:10.2528/PIER10122303
References

1. FCC, , Final Rule of the Federal Communications Commission, Vol. 67, No. 95, 47 CFR, Part 15, Sec. 503, Federal Register, May 2002.

2. WiMedia, Alliance, "Multiband OFDM physical layer specifications: Physical specification: Final deliverable Version 1.5,", 2009.

3. UWB Forum, www.uwbforum.org.
doi:10.1109/WCSP.2009.5371726

4. Murad, S. A. Z., R. K. Pokharel, H. Kanaya, and K. Yoshida, "A 3.0--7.5 GHz CMOS UWB PA for group 1~3 MB-OFDM application using current-reused and shunt-shunt feedback," IEEE International Conference on Wireless Communications and Signal Processing (WCSP 2009), 1-4, 2009.
doi:10.2528/PIER10041808

5. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenny, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.

6. Lee, S.-Y. and G.-D. Lu, "A UWB CMOS power amplifier with differential to single-ended converter," IEEE International Symposium on VLSI Design (VAD), 314-317, 2007.
doi:10.1163/156939310791036412

7. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using negative gm cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves Applications, Vol. 24, No. 5--6, 619-630, 2010.
doi:10.1109/ISCAS.2005.1465784

8. Jose, S., H. J. Lee, H. Dong, and S. S. Choi, "A low power CMOS power amplifier for ultra wideband (UWB) applications," IEEE International Symposium on Circuits and Systems, 5111-5114, 2005.

9. Han, C. H., W. W. Zhi, and K. M. Gin, "A low power CMOS full-band UWB power amplifier using wideband RLC matching method," IEEE Conference on Electron Devices and Solid-State Circuit, 223-236, 2005.

10. Lu, C., A. V. Pham, and M. Shaw, "A CMOS power amplifier for full-band UWB transmitters," IEEE Symposium on Radio Frequency Integrated Circuit, 397-400, 2006.
doi:10.1109/APCCAS.2006.342446

11. Wang, R. L., Y. K. Su, and C. Liu, "3--5 GHz cascoded UWB power amplifier," IEEE Asia Pacific Conference on Circuits and Systems, 367-369, 2006.
doi:10.1163/156939310793675619

12. Lee, M.-W., S.-H. Kam, Y.-S. Lee, and Y.-H. Jeong, "A highly efficient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves Applications, Vol. 24, No. 17--18, 2537-2545, 2010.

13. Ellinger, F., Radio Frequency Integrated Circuits and Technologies, Springer-Verlag Berlin Heidelberg, 2007.

14. Lee, T. H., The Design of CMOS Radio-frequency Integrated Circuits, 2nd Ed., Cambridge Univ. Press, Cambridge, UK, 2004.
doi:10.2528/PIER10060806

15. Zhang, B., Y.-Z. Xiong, L. Wang, S. Hu, T.-G. Lim, Y.-Q. Zhuang, and L.-W. Li, "A D-band power amplifier with 30-GHz bandwidth and 4.5-dBm psat for high-speed communicationc system," Progress In Electromagnetics Research, Vol. 107, 161-178, 2010.

16. Anderson, S., C. Svensson, and O. Drugge, "Wideband LNA for a multistandard wireless receiver in 0.18 μm process," European Solid-State Circuits Conference, 655-658, 2003.
doi:10.2528/PIER09071609

17. Jimenez Martin, J. L., V. Gonzalez-Posadas, J. E. Gonzalez-Garcia, F. J. Arques-Orobon, L. E. Garcia Munoz, and D. Segovia-Varga, "Dual band high efifciency class CE power amplifier based on CRLH diplexer," Progress In Electromagnetics Research, Vol. 97, 217-240, 2009.

18. Cripps, S., RF Power Amplifiers for Wireless Communications,, Artech House, Boston, 1999.

19. Razavi, B., Design of Analog CMOS Integrated Circuits, McGraw Hill, New York, 2001.
doi:10.1109/22.899960

20. Ferrero, A., V. Teppati, and A. Carullo, "Accuracy evaluation of On-Wafer load-pull measurement," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 39-43, 2001.
doi:10.1109/TMTT.2005.854218

21. Choon, B. S., H. O. Beng, S. Y. Kiat, J.-G. Ma, and A. D. Manh, "Accurate and scalable RF interconnect model for silicon-based RFIC applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 3035-3044, 2005.
doi:10.1109/TVLSI.2005.857177

22. Shi, X.-M., J.-G. Ma, S. Y. Kiat, A. D. Manh, and E.-P. Li, "Equivalent circuit model of On-Wafer CMOS interconnects for RFICs," IEEE Transactions on Very Large Scale Integration (VLSI) System, Vol. 13, No. 9, 1060-1071, 2005.
doi:10.1163/156939310791285218

23. Sharma, R., T. Chakravarty, and A. B. Bhattacharyya, "Reduction of signal overshoots in high-speed interconnects using adjacent ground tracks," Journal of Electromagnetic Waves Applications, Vol. 24, No. 7, 941-950, 2010.
doi:10.2528/PIER09091707

24. Wu, B. and L. Tsang, "Full-wave modeling of multiple vias using differential signaling and shared antipad in multilayered high speed vertical interconnects," Progress In Electromagnetics Research, Vol. 97, 129-139, 2009.

25. Agilent, Technologies, "Amplifier parameters reference," 2007.,", 2007.

26. Agilent Technologies, P2D simulations, 2005.

27. Dunleavy, L. P. and L. Jiang, "Understanding P2D nonlinear models," Microwave Journals, 2007.
doi:10.1504/IJCNDS.2008.020712

28. Wong, S.-K., K. Fabian, M. Siti, and J.-H. See, "Ultra-wideband (UWB) CMOS power amplifier design and implementation," Int. Journals of Communication Networks and Distributed System (IJCNDS), Vol. 1, No. 3, 296-311, 2008.

29. Rivas-T, W., "Using S-parameter data effectively," Planet Analog Magazine, 2007.
doi:10.1017/CBO9780511805738

30. Niknejad, A. M., Electromagnetics for High-speed Analog and Digital Communication Circuits, Cambridge Univ. Press, Cambridge, UK, 2007.

31. Sayre, C. W., "Complete Wireless Design," Mc-Graw Hill, 2008.