Vol. 113
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-04
Wideband Sounder for Dynamic and Static Wireless Channel Characterisation: Urban Picocell Channel Model
By
Progress In Electromagnetics Research, Vol. 113, 285-312, 2011
Abstract
This paper presents a high speed configurable FPGA-based wideband channel sounder with signal bandwidths up to 200 MHz and results of a study of dynamic urban picocell channel. The use of FPGA allows the sounder to be adaptable for measurements in different scenarios. Adaptable options include changes to the waveform, bandwidth, channel sampling rate and real-time averaging to improve signal-to-noise ratio in weak signal conditions. The implemented architecture has led to a 70% reduction in size and weight compared to sounders in use elsewhere making it ideal for mobile channel measurements. The study of an urban picocell channel has shown that dynamic variation due to automotive traffic introduces average signal strength fades of up to 5 dB but causes frequency selective fading with depths of up to 40 dB. Existing channel models assume antenna heights of more than 6 m and path lengths of more than 30 m. Therefore there is a need for shorter path models and this paper proposes a linear picocell channel model for static and dynamic urban environment.
Citation
David Lorater Ndzi, Kenneth Stuart, Somboon Toautachone, Branislav Vuksanovic, and David A. Sanders, "Wideband Sounder for Dynamic and Static Wireless Channel Characterisation: Urban Picocell Channel Model," Progress In Electromagnetics Research, Vol. 113, 285-312, 2011.
doi:10.2528/PIER10122905
References

1. Ndzi, D. L., N. Savage, and B. Gremont, "Spatial and temporal variation of wideband indoor channels," International Journal of Antennas and Propagation, Vol. 2010, Article ID 735434, 11, 2010.

2. Ndzi, D., J. Austin, and E. Vilar, "Hyper-resolution indoor channel impulse responses: Multipath components and k-factors," Electronics Letters, Vol. 35, No. 9, 698-699, April 1999.
doi:10.1049/el:19990491

3. Maciel, L. R., H. L. Bertoni, and H. H. Xia, "Unified approach to prediction of propagation over buildings for all ranges of base station antenna height," IEEE Transactions on Vehicular Technology, Vol. 42, No. 1, 41-45, January 1993.
doi:10.1109/25.192385

4. Kurner, T., D. J. Cichon, and W. Wiesbeck, "Concepts and results for 3d digital terrain-based wave propagation models: An overview," IEEE Journal on Selected Areas in Communications, Vol. 11, 1002-1012, September 1993.
doi:10.1109/49.233213

5. Hashemi, H., "The indoor radio propagation channel," IEEE Proceedings, Vol. 81, No. 7, 941-968, July 1993.

6. Cichon, D. J. and T. Kurner, Propagation prediction models, COST 231 Final Report, Chapter 4, 134, 1999.

7. Goncalves, N. C. and L. M. Correia, "A propagation model for urban microcellular systems at the UHF band," IEEE Transactions on Vehicular Technology, Vol. 49, No. 4, 1294-1302, July 2000.
doi:10.1109/25.875245

8. Juan-Llacer, L., L. Ramos, and N. Cardona, "Application of some theoretical models for coverage prediction in macrocell urban environments," IEEE Transactions on Vehicular Technology, Vol. 48, No. 5, 1463-1468, September 1999.
doi:10.1109/25.790521

9. Berg, J., "A recursive method for street microcell path loss calculations," IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC-95, 140-143, Toronto, Canada, September 195.

10. Lee, W. C. Y. and D. J. Y. Lee, "Microcell prediction in dense urban area," IEEE Transactions on Vehicular Technology, Vol. 47, No. 1, 246-253, February 1998.
doi:10.1109/25.661051

11. Okumura, Y., E. Ohmori, T. Kawano, and K. Fukuda, "Field strength and its variability in VHF and UHF land mobile radio services," Review of the Electrical Communications Laboratory, Vol. 16, 825-873, September-October 1968.

12. Hata, M., "Empirical formula for propagation loss in land mobile radio services," IEEE Transactions on Vehicular Technology, Vol. 29, No. 3, 317-325, September 1981.
doi:10.1109/T-VT.1980.23859

13. COST Action 231, , Digital mobile radio towards future generation systems, No. 18957 Final Report, European Commission, 1999.

14. Electronic Communication Committee (ECC) within the European Conference of Postal and Telecommunications Administration (CEPT), , The analysis of the coexistence of FWA cells in the 3.4-3.8 GHz band, ECC Report 33, May 2003.

15. Rappaport, T. S., Wireless Communications: Principles and Practice, Prentice Hall, New Jersey, USA, 2002.

16. Wireless World Initiative New Radio (WINNER), 6th Framework Programme, Information Society Technologies, IST-2003-507591 , Website: https://www.ist-winner.org/.

17. The Working Group for WLAN Standards (IEEE 802.11), Website: http://www.ieee802.org/11/.

18. 3rd Generation Partnership Project, Website: http://www.3gpp.org/.

19. Papantoniou, S. J. Modelling the mobile-radio channel, Ph.D. Thesis, No. 9120, ETH ZÄurich, 1990.

20. Fleury, B. and U. B. R. Heddergott, Advanced radio channel model for magic WAND, 600-607 ACTS Mobile Telecommunications Summit, Granada, Spain, November 1996.

21. Nielsen, J., V. Afanassiev, and J. B. Andersen, "A dynamic model of the indoor channel," Wireless Personal Communications, Vol. 19, No. 2, 91-120, November 2001.
doi:10.1023/A:1011949719129

22. Chong, C. C., D. I. Laurenson, and S. McLaughlin, "The implementation and evaluation of a novel wideband dynamic directional indoor channel model based on a markov process," 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, Vol. 1, 670-674, September 2003.
doi:10.1109/PIMRC.2003.1264357

23. Wireless Local Area Network Hotspot Directory, W-Squared Inc., Website: http://www.wifi411.com/.

24. Calcev, G., D. Chizhik, B. Goransson, S. Howard, H. Huang, A. Kogiantis, A. F. Molisch, A. L. Moustakas, D. Reed, and X. Hao, "A wideband spatial channel model for system-wide simulations," IEEE Transactions on Vehicular Technology, Vol. 56, No. 2, 389-403, March 2007.
doi:10.1109/TVT.2007.891463

25. 3GPP "Spatial channel model for MIMO simulations," ftp://ftp.3gpp2.org/TSGC/Working/2001/TSG-C 0108/TSG-C-0801-Portland/WG5/.

26. WINNER II Channel Models, September 30, 2007, http://www.ist-winner.org/WINNER2-Deliverables/D1.1.2v1.1.pdf.

27. DeLange, O. E., "Propagation studies at microwave frequency by means of very short pulse ," Bell System Technical Journal, Vol. 31, 91-103, January 1952.

28. Hewitt, A. and E. Vilar, "Sective fading on LOS microware links: Classical and spread spectrum measurements techniques," IEEE Trans. on Comms., Vol. 36, No. 7, 789-796, July 1988.
doi:10.1109/26.2807

29. Crawford, A. B. and W. C. Jakes, "Selective fading of microwaves," Bell System Technical Journal, Vol. 31, 68-90, January 1952.

30. Bailey, R. J. and G. R. Summers, "Radio channel characterisation for the digital european cordless telecommunications system," British Telecommunications Technology Journal, Vol. 8, No. 1, 25-30, January 1990.

31. Turin, G. L., F. D. Clapp, T. L. Johnson, S. B. Fine, and D. Lavry, "A statistical model of urban multipath propagation," IEEE Transactions on Vehicular Technology, Vol. 21, No. 1, 1-9, February 1972.
doi:10.1109/T-VT.1972.23492

32. Falconer, D. D. and S. Lek Ariyavisitakul, "Broadband wireless using singal carrier and frequency domain equalization," 5th International Symposium on Wireless Personal Multimedia Communications, Vol. 1, 27-36, Honolulu, HI, USA, October 2002.

33. Matic, D. M., H. Harada, and R. Prasad, "Indoor and outdoor frequency measurements for MM-waves in the range of 60 GHz," 48th IEEE Vehicular Technology Conference: Pathway to a Global Wireless Revolution , Vol. 1, 567-571, Ottawa, Canada, May 1998.

34. Bajwa, A. S. and J. D. Parsons, "Small-area characterization of UHF urban and suburban mobile radio propagation," IEE Proceedings, Vol. 129, No. 2, 102-109, April 1982.

35. Godfrey, K., Perturbation Signals for System Identi¯cation, Prentice-Hall, London, UK, 1993.

36. Ditmar, W. P. A., M. Khoshlahjeh-Motamed, and R. R. Pettitt, "Design and Application of multi-frequency signals for power plant indentification," IEE International Conference on Control'91, Vol. 1, 665-670, Edinburgh, United Kingdom, March 25-28, 1991.

37. Nielson, D. L., "Microwave propagation measurements for mobile digital radio application ," IEEE Transactions on Vehicular Technology, Vol. 27, No. 3, 117-131, August 1978.
doi:10.1109/T-VT.1978.23733

39. Cox, D. C., "Delay-doppler characteristics of multipath delay spread and average excess delay for 910MHz urban mobile radio paths," IEEE Transactions on Antennas and Propagation, Vol. 20, No. 5, 625-635, September 1972.
doi:10.1109/TAP.1972.1140277

40. Nche, C., A. M. D. Turkmani, and A. A. Arowojolu, "Channel sounder for PCN networks," IEE Colloquium on High Bit Rate UHF/SHF Channel Sounders Technology and Measurements, 5/1-6, Savoy Place, London, UK, December 1993.

41. Lovnes, G., S. E. Paulsen, and R. H. Rakken, "A millimeter wave channel sounder based on chirp/correlation technique," IEE Colloquium on High Bit Rate UHF/SHF Channel Sounders Technology and Measurements, 8/1-7, Savoy Place, London, UK, December 1993.

42. Salous, S. and V. Hinostroza, "Bi-dynamic indoor measurements with high resolution channel sounder," 5th International Symposium on Wireless Personal Multimedia Communications, Vol. 1, 262-266, Honolulu, HI, USA, October 2002.

43. RUSK Channel Sounder Ordering Information, MEDAV GmbH, Website: http://www.channelsounder.de/.

44. Trulove, J., Build Your Own Wireless LAN, McGraw-Hill, New York, USA, 2002.

45. Duet Channel SounderTechnical Description, BerkeleyVaritronics Systems, Inc.,Website: http://www.bvsystems.com/Products/CDMA/Duet/duet.htm.

46. Elektrobit Propsound Channel SounderTechnical Description, Elektrobit Corporation,Website: http://www.elektrobit.com/index.php?2.

47. Van Rees, J., "Measurements of the wideband radio channel characteristics for rural, residental, and suburban areas," IEEE Transactions on Vehicular Technology, Vol. 36, No. 1, 2-6, February 1987.
doi:10.1109/T-VT.1987.24090

48. Safer, H., G. L. Berger, and F. Seifert, "Propagation measurement-based probability of error predictions for the tactical VHF-range," IEEE Military Communication Conference Proceedings, 331-335, November 1999.

49. Dinis, M. and J. Fernandes, "Provision of sufficient transmission capacity for broadband mobile multimedia: A step toward 4G," IEEE Comm. Magazine, Vol. 39, No. 8, 46-54, August 2001.
doi:10.1109/35.940034

50. Austin, J., W. P. A. Ditmar, W. K. Lam, E. Vilar, and K. W.Wan, "A spread spectrum communication channel sounder," IEEE Transactions on Communications, Vol. 45, No. 7, 840-847, July 1997.
doi:10.1109/26.602589

51. Hunt Engineering "Choosing FPGA or DSP for your application," 2010, http://www.hunteng.co.uk/info/fpga-or-dsp.htm.

52. Parker, M., "FPGA versus DSP design reliability and maintenance," 2010, http://www.dsp-fpga.com/articles/id/?2207.

53. Bilsby, D. C. M., R. L. Walke, and R. W. M. Smith, "Comparison of a programmable DSP and a FPGA for real-time multiscale convolution," IEE Colloquium on High Performance Architectures for Real-Time Image Processing , No. 1998/197, 4/1-4/6, London, February 1998.

54. Analog Devices, AD12401 data sheet, 2010, http://www.analog .com/en/analog-to-digital-converters/ad-converters/ad12401/products/product.html..

55. Technobox Inc. "64-bit PMC-to-PCI adapter card data sheet," 2010, Website: http://www.technobox.com/cat3673.pdf.

56. Alpha Data Ltd., ADM-XRC-II xilinx virtex-II PMC data sheet, Alpha Data, 2010, Website: http://www.alpha-data.com/adm-xrc-ii.html.

57. Torres, R. P., B. Cobo, D. Mavares, F. Medina, S. Loredo, and M. Engels, "Measurement and statistical analysis of the temporal variations of a fixed wireless link at 3.5 GHz," Wireless Personal Communications, Vol. 37, No. 1-2, 41-59, April 2006.
doi:10.1007/s11277-006-1320-z

58. Ikegami, F., S. Yoshida, T. Takeuchi, and M. Umehira, "Propagation factors controlling mean field strength on urban streets," IEEE Transactions Antennas and Propagation, Vol. 32, No. 8, 936-942, August 1984.

59. Feuerstein, M. J., K. L. Blackard, T. S. Rappaport, S. Y. Seidel, and H. H. Xia, "Path loss, delay spread, and outage models as functions of antenna height for microcellular system design ," IEEE Transactions on Vehicular Technology, Vol. 43, No. 3, 487-498, August 1994.
doi:10.1109/25.312809

60. Walfisch, J. and H. Bertoni, "A theoretical model of UHF propagation in urban environments," IEEE Transactions Antennas and Propagation, Vol. 36, No. 12, 1788-1796, December 1988.
doi:10.1109/8.14401