Vol. 116
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-04
3D Experimental Detection and Discrimination of Malignant and Benign Breast Tumor Using Nn-Based UWB Imaging System
By
Progress In Electromagnetics Research, Vol. 116, 221-237, 2011
Abstract
This paper presents both simulation and experimental study to detect and locate breast tumors along with their classification as malignant and/or benign in three dimensional (3D) breast model. The contrast between the dielectric properties of these two tumor types is the main key. These dielectric properties are mainly controlled by the water and blood content of tumors. For simulation, electromagnetic simulator software is used. The experiment is conducted using commercial Ultrawide-Band (UWB) transceivers, Neural Network (NN) based Pattern Recognition (PR) software for imaging and homogenous breast phantom. The 3D homogeneous breast phantom and tumors are fabricated using pure petroleum jelly and a mixture of wheat flour and water respectively. The simulation and experimental setups are performed by transmitting the UWB signals from one side of the breast model and receiving from opposite side diagonally. Using discrete cosine transform (DCT) of received signals, we have trained and tested the developed experimental Neural Network model. In 3D breast model, the achieved detection accuracy of tumor existence is around 100%, while the locating accuracy in terms of (x,y,z) position of a tumor within the breast reached approximately 89.2% and 86.6% in simulation and experimental works respectively. For classification, the permittivity and conductivity detection accuracy are 98.0% and 99.1% in simulation, and 98.6% and 99.5% in experimental works respectively. Tumor detection and type specification 3D may lead to successful clinical implementation followed by saving of precious human lives in the near future.
Citation
Saleh Ali AlShehri, Sabira Khatun, Adznan B. Jantan, Raja Syamsul Azmir Raja Abdullah, Rozi Mahmud, and Zaiki Awang, "3D Experimental Detection and Discrimination of Malignant and Benign Breast Tumor Using Nn-Based UWB Imaging System," Progress In Electromagnetics Research, Vol. 116, 221-237, 2011.
doi:10.2528/PIER11022601
References

1. Lim, H. B., N. T. Nhung, E. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704.

2. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast tumor detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759

3. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetic Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902

4. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetic Research, Vol. 103, 153-168, 2010.

5. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetic Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIER10071002

6. Alshehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural networks," Progress In Electromagnetic Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202

7. Byrne, D., M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetic Research, Vol. 108, 401-416, 2010.
doi:10.2528/PIER10090205

8. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

9. Bindu, G., A. Lonappan, V. Thomas, C. K. Ananadan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetic Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

10. Li, X., S. K. Davis, S. C. Hagness, D. W. Weide, and B. D. Veen, "Microwave imaging via space-time beam forming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwave Theory Techniques, Vol. 52, No. 8, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686

11. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856

12. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004

13. Lai, J. C., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and heterogeneous breast phantom for ultra-wideband microwave imaging applications," Progress In Electromagnetic Research, Vol. 100, 377-415, 2010.

14. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetic Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705

15. Alshehri, S. A., S. Khatun, A. Jantan, R. S. A. Raja Abdullah, R. Mahmod, and Z. Awang, "Experimental breast tumor detection using NN-based UWB imaging," Progress In Electromagnetic Research, Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102

16. Sha, L., E. R. Ward, and B. Story, "A review of dielectric properties of normal and malignant breast tissue," Proceedings IEEE SoutheastCon, 457-462, Apr. 5-7, 2002.

17. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, IOP Publishing, Oct. 2007.

18. Rangayyan, R. M., N. M. El-Faramawy, J. E. Leo Desautels, and O. A. Alim, "Measures of acutance and shape for classification of breast tumor ," IEEE Transactions on Medical Imaging,, Vol. 16, No. 6, Dec. 1997.
doi:10.1109/42.650876

19. Conceicao, R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures ," Progress In Electromagnetic Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904

20. Davis, S. K., B. D. van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, Jan. 2008.
doi:10.1109/TBME.2007.900564

21. Insana, M. F., C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, "Viscoelastic imaging of breast tumor microenvironment with ultrasound," Journal of Mammary Gland Biology and Neoplasia, Vol. 9, No. 4, Oct. 2004.

22. Bindu, G. and K. T. Mathew, "Characterization of benign and malignant breast tissues using 2-D microwave tomographic imaging," Microwave and Optical Technology Letters, Vol. 49, No. 10, Oct. 2007.

23. O'Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classi¯cation in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011.

24. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection design of an antenna-array element," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, May 1999.
doi:10.1109/8.774131

25. CST Microwave Studio, CST Inc., 2009.

26. Time Domain Corporation, Cummings Research Park, 330 Wynn Drive, Suite 300, Huntsville, AL 35805, USA .

27. Dielectric Constants of Common Materials http: //www.flowme-terdirectory.com/dielectric constant 01.html.