Vol. 121
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-10-13
MIMO-Tops Mode for High-Resolution Ultra-Wide-Swath Full Polarimetric Imaging
By
Progress In Electromagnetics Research, Vol. 121, 19-37, 2011
Abstract
The novel TOPS mode can achieve wide swath imaging coverage at the cost of impaired azimuth resolution. MIMO-SAR systems combined with multi-channel SAR signal reconstruction in azimuth and digital beamforming (DBF) on receive in elevation can overcome the inherent contradiction between swath width and azimuth resolution of conventional SAR systems. This paper derives a novel spaceborne MIMO-TOPS mode for high-resolution ultra-wide-swath full polarimetric imaging. In such an imaging scheme, different polarimetric waveforms with different elevation beam pointing directions and short time delays are transmitted in a single pulse repetition interval (PRI) by different sub-aperture antennas in azimuth. Besides improving the desired signal-to-noise ratio (SNR) and suppressing ambiguous energy in elevation, a novel DBF on receive approach including two steps is adopted to separate different echoes corresponding to sub-pulses with different polarizations. The design example of a full polarimetric MIMO-TOPS SAR system, which allows for the imaging capacity to cover an ultra wide swath of 400 km with a high azimuth resolution of 3 m, is given to validate the proposed imaging scheme.
Citation
Wei Xu, Pingping Huang, and Yun-Kai Deng, "MIMO-Tops Mode for High-Resolution Ultra-Wide-Swath Full Polarimetric Imaging," Progress In Electromagnetics Research, Vol. 121, 19-37, 2011.
doi:10.2528/PIER11030209
References

1. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.

2. Angulo, L. D., S. G. Garcia, M. Fernandez Pantoja, C. Cobos Sanchez, and R. Gomez Martin, "Improving the SAR distribution in petri-dish cell cultures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 815-826, 2010.

3. Lim, S. H., J.-H. Han, S.-Y. Kim, and N.-H. Myung, "Azimuth beam pattern synthesis for airborne SAR system optimization," Progress In Electromagneitcs Research, Vol. 106, 295-309, 2010.

4. Chan, Y. K. and S. Y. Lim, "Synthetic aperture radar (SAR) signal generation," Progress In Electromagnetics Research B, Vol. 1, 269-290, 2008.

5. Li, C. and D.-Y. Zhu, "A residue-pairing algorithm for insar phase unwrapping," Progress In Electromagnetics Research, Vol. 95, 341-354, 2009.

6. Sun, J., S. Mao, G.Wang, and W. Hong, "Extended exact transfer function algorithm for bistatic SAR of translational invariant case," Progress In Electromagnetics Research, Vol. 99, 89-108, 2009.

7. Zan, F. D. and A. M. Guarnieri, "TOPSAR: Terrain observation by progressive scans," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 9, 2352-2360, Sep. 2006.

8. Meta, A., J. Mittermayer, P. Prats, R. Scheiber, and U. Steinbrecher, "TOPS imaging with TerraSAR-X: Mode design and perfomance analysis ," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 2, 759-769, Feb. 2010.

9. Prats, P., R. Scheiber, J. Mittermayer, A. Meta, and A. Moreira, "Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 2, 770-780, Feb. 2010.

10. Chua, M. Y. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.

11. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.

12. Krieger, G., N. Gebert, M. Younis, F. Bordoni, A. Patyuchenko, and A. Moreira, "Advanced concepts for ultra-wide-swath SAR imaging with high azimuth resolution," Proc. EUSAR, Friedrichshafen, Germany, 2008.

13. Gebert, N., G. Krieger, and A. Moreira, "Multi-channel ScanSAR for high-resolution ultra-wide-swath imaging," Proc. EUSAR, Friedrichshafen, Germany, 2008.

14. Gebert, N., G. Krieger, and A. Moreira, "Multichannel azimuth processing in ScanSAR and TOPS mode operation," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 7, 2994-3008, Jul. 2010.

15. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.

16. Zhao, Y. W., M. Zhang, and H. Cheng, "An efficient ocean SAR raw signal simulation by employing fast Fourier transform," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2273-2284, 2010.

17. Mao, X., D.-Y. Zhu, and Z.-D. Zhu, "Signatures of moving target in polar format spotlight SAR image," Progress In Electromagnetics Research, Vol. 92, 47-64, 2009.

18. Zhang, Y.-D., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.

19. Teng, H. T., H.-T. Ewe, and S. L. Tan, "Multifractal dimension and its geometrical terrain properties for classification of multiband multi-polarized SAR image," Progress In Electromagnetics Research, Vol. 104, 221-237, 2010.

20. Jin, Y.-Q., "Polarimetric scattering modeling and information retrieval of SAR remote sensing --- A review of fdu work ," Progress In Electromagnetics Research, Vol. 104, 333-384, 2010.

21. Krieger, G., N. Gebert, and A. Moreira, "Multidimensional waveform encoding for synthetic aperture radar remote sensing," Proc. International Conference on Radar Systems (RADAR), Edinburgh, UK, 2007.

22. Krieger, G., N. Gebert, and A. Moreira, "Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing ," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 1, 31-46, Jan. 2008.

23. Xu, W. and Y. Deng, "Multi-channel SAR system with reflector antenna for high-resolution wide-swath imaging," IEEE Antenna and Wireless Propa. Lett., Vol. 9, 1123-1126, Dec. 2010.

24. Junghyo, K., O. Alicja, and W. Werner, "Investigation of MIMO SAR for interferometry," Proc. EUSAR, Friedrichshafen, Germany, 2008.

25. Suess, M., B. Grafmueller, and R. Zahn, "A novel high resolution, wide swath SAR system," Proc. IGARSS, Sydney, Australia, 2001.

26. Krieger, G., N. Gebert, and A. Moreira, "Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling," IEEE Geosci. Remote Sens. Lett., Vol. 1, No. 4, 260-264, Oct. 2004.

27. Gebert, N., G. Krieger, and A. Moreira, "Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging," IEEE Trans. Aerosp. Electron. Syst., Vol. 54, No. 2, 564-592, Apr. 2009.