Vol. 117
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-05-27
The Effects of Compression on Ultra Wideband Radar Signals
By
Progress In Electromagnetics Research, Vol. 117, 51-65, 2011
Abstract
Over the past ten years, Ultra Wideband (UWB) Radar has been widely investigated as a biomedical imaging modality, used to detect early-stage breast cancer and to continuously monitor vital signs using both wearable and contactless devices. The advantages of the technology in terms of low-power requirements and non-ionising radiation are well recognised, with the technology being applied to a range of non-invasive medical applications, from respiration to heart monitoring. Across all these applications, there is a strong necessity to efficiently manage the large quantities of UWB data which will be captured. For wearable devices in particular, the efficient compression of UWB data allows the monitoring system to conserve limited resources such as memory and battery capacity, by reducing data storage and in some cases transmission requirements. In contrast to lossless compression techniques, lossy compression algorithms can achieve higher compression ratios and consequently greater power savings, at the expense of a marginal degradation of the reconstructed signal. This paper compares the lossy JPEG2000 and Set Partitioning In Hierarchical Trees (SPIHT) algorithms for UWB signal compression. This study examines the effects of lossy signal compression on an UWB breast cancer classification algorithm. This particular application was chosen because the classification algorithm relies heavily on shape and surface texture detail embedded in the Radar Target Signature (RTS) of the tumour, and therefore will provide both a robust and easily quantifiable test platform for the compression algorithms. The study will evaluate the performance of the classification algorithm as a function of Compression Ratio (CR) and Percentage Root-mean-square Difference (PRD) between the original and reconstructed UWB signals.
Citation
Brian McGinley, Martin O'Halloran, Raquel Cruz Conceicao, Garry Higgins, Edward Jones, and Martin Glavin, "The Effects of Compression on Ultra Wideband Radar Signals," Progress In Electromagnetics Research, Vol. 117, 51-65, 2011.
doi:10.2528/PIER11032805
References

1. Lazaro, A., D. Girbau and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004

2. O'Halloran, M., E. Jones, and M. Glavin, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902

3. Maskooki, A., E. Gunawan, C. B. Soh, and K. S. Low, "Frequency domain skin artifact removal method for ultra-wideband breast cancer detection ," Progress In Electromagnetics Research, Vol. 98, 299-314, 2009.
doi:10.2528/PIER09101302

4. AlShehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202

5. Zainud-Deen, S. H., W. M. Hassen, E. El Deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

6. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001

7. Fear, E., J. Sill, and M. Stuchly, "Microwave system for breast tumor detection: experimental concept evaluation," IEEE APS International Symposium and USNC/URSI Radio Science Meeting, Vol. 1, 819-822, June 2000.

8. Khalaj Amineh, R., A. Trehan, and N. K. Nikolova, "TEM horn antenna for ultra-wide band microwave breast imaging," Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009.
doi:10.2528/PIERB08122213

9. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627

10. Li, X., E. J. Bond, B. D. V. Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, February 2005.
doi:10.1109/MAP.2005.1436217

11. O'Halloran, M., E. Jones, and M. Glavin, "Effects of ¯broglandular distribution on data-independent beamformering algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701

12. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Trans. Biomed. Eng., Vol. 57, No. 4, 830-840, 2009.
doi:10.1109/TBME.2009.2016392

13. Zhang, H., S. Tan, and H. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

14. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

15. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407

16. McGinley, B., M. O'Halloran, R. C. Conceicao, F. Morgan, M. Glavin, and E. Jones, "Spiking neural networks for breast cancer classification using radar target signatures," Progress In Electromagnetics Research C, Vol. 17, 79-94, 2010.
doi:10.2528/PIERC10100202

17. O'Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classification in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011.

18. Ziganshin, E., M. Numerov, and S. Vygolov, "UWB baby monitor,", 159-161, 2010.

19. Staderini, E., "UWB radars in medicine," IEEE Aerospace and Electronic Systems Magazine, Vol. 17, No. 1, 13-18, January 2002.
doi:10.1109/62.978359

20. Chia, M., S. Leong, C. Sim, and K. Chan, "Through-wall UWB radar operating within fcc's mask for sensing heart beat and breathing rate,", 267-270, 2005.

21. Zito, D., D. Pepe, B. Neri, and D. De Rossi, "Feasibility study of a low-cost system-on-a-chip UWB pulse radar on silicon for the heart monitoring,", 32-36, 2007.

22. Otto, C., A. Milenkovic, C. Sanders, and E. Jovanov, "System architecture of a wireless body area sensor network for ubiquitous health monitoring," Journal of Mobile Multimedia, Vol. 1, No. 4, 307-326, 2006.

23. Adams, M., "The JPEG-2000 still image compression standard," ISO/IEC JTC 1/SC 29/WG 1 N 2412., 2001.

24. Said, A. and W. Pearlman, "A new, fast, and e±cient image codec based on set partitioning in hierarchical trees," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6, No. 3, 243-250, 2002.
doi:10.1109/76.499834

25. Unser, M. and A. Aldroubi, "A review of wavelets in biomedical applications," Proceedings of the IEEE, Vol. 84, No. 4, 626-638, 2002.
doi:10.1109/5.488704

26. Mallat, S., "A Wavelet Tour of Signal Processing," Academic Press, 1999.

27. Daubechies, I., "Orthonormal bases of compactly supported wavelets,", Vol. 41, No. 7, 909-996, 1988.

28. Graps, A., "An introduction to wavelets," IEEE Computational Science & Engineering, Vol. 2, No. 2, 50-61, 1995.
doi:10.1109/99.388960

29. "ISO/IEC 15444-1:2000," ISO | International Organization for Standardization Std., 2000.

30. Higgins, G.S. Faul, R. McEvoy, B. McGinley, M. Glavin, W. Marnane, and E. Jones, "EEG compression using JPEG2000: How much loss is too much?," 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 614-617, 2010.
doi:10.1109/IEMBS.2005.1617159

31. Nguyen, M. and R. Rangayyan, "Shape analysis of breast masses in mammograms via the fractial dimension," Engineering in Medicine and Biology 27th Annual Conference, 3210-3213, 2005.

32. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.

33. Muinonen, K., "Light Scattering by Stochastically Shaped Particles.," Academic Press, 2000.
doi:10.1109/TBME.2007.900564

34. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, 2008.

35. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, June 2005.
doi:10.1002/cpa.3160450502

36. Cohen, A., I. Daubechies, and J. Feauveau, "Biorthogonal bases of compactly supported wavelets," Communications on Pure and Applied Mathematics, Vol. 45, No. 5, 485-560, 1992.

37. Lu, Z., D. Kim, and W. Pearlman, "Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm," IEEE Transactions on Biomedical Engineering, Vol. 47, No. 7, 849-856, 2002.

38. Hilton, M., "Wavelet and wavelet packet compression of electrocardiograms," IEEE Transactions on Biomedical Engineering, Vol. 44, No. 5, 402, 2002.