Vol. 120
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-08-30
Rectangular Microstrip Resonator Illuminated by Normal-Incident Plane Wave
By
Progress In Electromagnetics Research, Vol. 120, 83-97, 2011
Abstract
In the paper, an Illuminating Modes concept is introduced in order to find microstrip antenna parameters - resonant frequency, resonant resistance and radiation pattern. The concept is based on illuminating the rectangular patch by a single normally-incident plane wave. It results in the surface current density induced on the patch which is found by means of two-dimensional Spectral Domain Approach. Then, the resonant frequency, the quality factor, the resonant resistance and the radiation pattern of the analysed antenna are found. Application of Illuminating Mode concept in Spectral Domain Approach effects in analysis simplification and less time consuming calculations with no waste of the accuracy. Exemplary results for several kinds of radiators are presented, showing satisfactory level of agreement with published data.
Citation
Mariusz Pergol, and Wlodzimierz Zieniutycz, "Rectangular Microstrip Resonator Illuminated by Normal-Incident Plane Wave," Progress In Electromagnetics Research, Vol. 120, 83-97, 2011.
doi:10.2528/PIER11062908
References

1. Takahashi, M., T. Arima, and T. Uno, "FDTD analysis of printed antenna on thin dielectric sheet including quasistatic approximation," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 1022-1025, 2004.

2. Li, L. W., S. Gao, and A. Sambell, "FDTD analysis of a dual-frequency microstrip patch antenna," Progress In Electromagnetics Research, Vol. 54, 155-178, 2005.
doi:10.2528/PIER04121201

3. He, S., Y. Chen, S. Yang, and Z. Nie, "Fast analysis of microstrip antennas over a frequency band using an accurate mom matrix interpolation technique," Progress In Electromagnetics Research, Vol. 109, 301-324, 2010.
doi:10.2528/PIER10081107

4. Bahl, I., R. Garg, P. Bhartia, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, London, 2000.

5. Mrkvica, J., J. Zehentner, and J. Machac, "Spectral domain analysis of open planar transmission lines," Microwave Review, Vol. 10, No. 2, 36-42, 2004.

6. Zieniutycz, W., "Application of hybrid radiation modes of a microstrip line in the design of rectangular microstrip antennas," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 145, No. 5, 421-423, October 1998.
doi:10.1049/ip-map:19982063

7. Zieniutycz, W., "Hybrid radiation modes of microwave integrated circuit (MIC) lines-theory and application," Progress In Electromagnetics Research, Vol. 56, 299-322, 2006.
doi:10.2528/PIER05072102

8. Marynowski, W., P. Kowalczyk, and J. Mazur, "On the characteristic impedance definition in microstrip and coplanar lines," Progress In Electromagnetics Research, Vol. 110, 219-235, 2010.
doi:10.2528/PIER10090301

9. Itoh, T. and W. Menzel, "A full-wave analysis method for open microstrip structures," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 6, 1191-1196, November 1982.

10. Kataria, N., A. Kedar, and K. Gupta, "Spectral-domain modeling of superconducting microstrip structures: transmission lines and resonators," Microwave and Optical Technology Letters, Vol. 41, No. 1, 55-59, April 2004.

11. Pozar, D., "Input impedance and mutual coupling of rectangular microstrip antennas," Electronics Letters, Vol. 29, No. 1, 63-68, January 1981.

12. Wu, Z.-S. and J.-J. Zhang, "Composite electromagnetic scattering from the plate target above a one-dimensional sea surface: taking the diffraction into account," Progress In Electromagnetics Research, Vol. 92, 317-331, 2009.
doi:10.2528/PIER09032902

13. Apostol, M. and G. Vaman, "Plasmons and diffraction of an electro-magnetic plane wave by a metallic sphere," Progress In Electromagnetics Research, Vol. 98, 97-118, 2009.
doi:10.2528/PIER09100103

14. Hong, T., L.-T. Jang, Y.-X. Xu, S.-X. Gong, and W. Jiang, "Radiation and scattering analysis of a novel circularly polarized slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1709-1720, 2010.

15. Eom, H. J., Electromagnetic Wave Theory for Boundary-Value Problems, Springer, Berlin, Heidelberg, 2004.

16. Qing, A., "Vector spectral-domain method for the analysis of frequency selective surfaces," Progress In Electromagnetics Research, Vol. 65, 201-232, 2006.
doi:10.2528/PIER06091401

17. Jansen, R. H., "The spectral-domain approach for microwave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, No. 10, 1043-1056, October 1985.
doi:10.1109/TMTT.1985.1133168

18. Rhodes, D. R., Synthesis of Planar Antenna Sources, Clarendon Press, Oxford, 1974.

19. Shevchenko, V. V., Continuous Transitions in Open Waveguides, Prentise Hall, Englewood Cliffs, NJ, 1973.

20. Harrington, R. R., Time-Harmonic Electromagnetic Fields, McGraw-Hill Book Company, New York, Toronto, London, 1961.