Vol. 120
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-09-26
Fast Analysis of Electrically Large Radome in Millimeter Wave Band with Fast Multipole Acceleration
By
Progress In Electromagnetics Research, Vol. 120, 371-385, 2011
Abstract
Radome has strong effects on the radiation performances of the antenna in millimeter wave band. In this paper, the aperture integration-surface integration (AI-SI) method is adopted to analyze the electrically large antenna-radome system. The fast multipole method (FMM) is proposed to accelerate the aperture integration and inner surface integration in the AI-SI method. An electrically large antenna-radome system at W band is analyzed and measured. The radiation patterns of the system calculated using the AI-SI method with and without the fast multipole acceleration and the measured patterns are compared. The calculated patterns agree very well with each other, and both have the same agreement with the experimental results. However, the computational time of the proposed analysis with the fast multipole acceleration is reduced significantly.
Citation
Hong Fu Meng, and Wen-Bin Dou, "Fast Analysis of Electrically Large Radome in Millimeter Wave Band with Fast Multipole Acceleration," Progress In Electromagnetics Research, Vol. 120, 371-385, 2011.
doi:10.2528/PIER11081101
References

1. Arvas, E., A. Rahhalarabi, U. Pekel, et al. "Electromagnetic transmission through a small radome of arbitrary shape," IEE Proceedings-H Microwaves, Antennas and Propagation, Vol. 137, No. 6, 401-405, 1990.
doi:10.1049/ip-h-2.1990.0072

2. Povinelli, M. J. and J. D'Angelo, "Finite element analysis of large wavelength antenna radome problems for leading edge and radar phased arrays," IEEE Transactions on Magnetics, Vol. 27, No. 5, 4299-4302, 1991.
doi:10.1109/20.105052

3. Nie, X.-C., N. Yuan, L.-W. Li, T. S. Yeo, and Y.-B. Gan, "Fast analysis of electromagnetic transmission through arbitrary shaped airborne radomes using precorrected-FFT method," Progress In Electromagnetics Research, Vol. 54, 37-59, 2005.
doi:10.2528/PIER04100601

4. Lee, H.-S. and H. Park, "Prediction of radome bore-sight errors using a projected image of source distributions," Progress In Electromagnetics Research, Vol. 92, 181-194, 2009.
doi:10.2528/PIER09033105

5. Paris, D., "Computer-aided radome analysis," IEEE Trans. Antennas Propag., Vol. 18, No. 1, 7-15, 1970.
doi:10.1109/TAP.1970.1139614

6. Kozakoff, D. J., Analysis of Radome-enclosed Antennas, Artech House, Boston, London, 1997.

7. Meng, H.-F., W.-B. Dou, T.-T. Chen, et al. "Analysis of radome using aperture integration-surface integration method with modified transmission coefficient," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, No. 2, 199-210, 2009.
doi:10.1007/s10762-008-9438-6

8. Hu, B., X.-W. Xu, M. He, and Y. Zheng, "More accurate hybrid PO-MoM analysis for an electrically large antenna-radome structure," Progress In Electromagnetics Research, Vol. 92, 255-265, 2009.
doi:10.2528/PIER09022301

9. Meng, H.-F. and W.-B. Dou, "A hybrid method for the analysis of radome-enclosed horn antenna," Progress In Electromagnetics Research, Vol. 90, 219-233, 2009.
doi:10.2528/PIER08122502

10. Nie, X.-C., Y.-B. Gan, N. Yuan, C.-F. Wang, and L.-W. Li, "An efficient hybrid method for analysis of slot arrays enclosed by a large radome," Journal of Electromagnetic Waves Applications, Vol. 20, No. 2, 249-264, 2006.
doi:10.1163/156939306775777215

11. Lu, C.-C., "A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes," IEEE Trans. Antennas Propag., Vol. 51, No. 3, 606-612, 2003.
doi:10.1109/TAP.2003.809823

12. Oğuzer, T. and A. Altintas, "Analysis of the nonconcentric reflector antenna-in-radome system by the iterative reflector antenna and radome interaction," Journal of Electromagnetic Waves Applications, Vol. 21, No. 1, 57-70, 2007.
doi:10.1163/156939307779391696

13. Sukharevsky, I. V., S. E. Vazhinsky, and I. O. Sukharevsky, "3-D radome-enclosed aperture antenna analyses and far-side radiation," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2843-2849, 2010.
doi:10.1109/TAP.2010.2052548

14. Sukharevsky, O. I. and V. A. Vasilets, "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B, Vol. 4, 159-169, 2008.
doi:10.2528/PIERB08011404

15. Sukharevsky, O. I., V. A. Vasilets, S. V. Kukobko, et al. "The electromagnetic wave scattering by aerial and ground radar objects," Kharkov, Ukraine, KUAF, 2009.

16. Greengard, L. and V. Rokhlin, "A fast algorithm for particle simulation," J. Comput. Phys., Vol. 73, 325-348, 1987.
doi:10.1016/0021-9991(87)90140-9

17. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, 414-439, Feb. 1990.
doi:10.1016/0021-9991(90)90107-C

18. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Trans. Antennas Propagat. Mag., Vol. 35, 7-12, Jun. 1993.
doi:10.1109/74.250128

19. Cui, T.-J. and W.-C. Chew, Fast Algorithms in Computational Electromagnetics, Artech House, INC, Oct. 2003.

20. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
doi:10.2528/PIER10012005

21. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

22. Gurel, L., O. Ergul, A. Unal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106

23. Eibert, T. F., Ismatullah, E. Kaliyaperumal, and C. H. Schmidt, "Inverse equivalent surface current method with hierarchical higher order basis functions, full probe correction and multi-level fast multipole acceleration," Progress In Electromagnetics Research, Vol. 106, 377-394, 2010.
doi:10.2528/PIER10061604

24. Yang, M.-L. and X.-Q. Sheng, "Parallel high-order FE-BI-MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.
doi:10.1163/156939309789566932