Vol. 124
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-10
Design of Dual-Band Bandpass Filters with Controllable Bandwidths Using New Mapping Function
By
Progress In Electromagnetics Research, Vol. 124, 17-34, 2012
Abstract
In this paper, a novel design method for a dual-band bandpass filter (BPF) with arbitrary controllable bandwidths based on a simple frequency mapping function is proposed and its analytical design equations are also derived. The circuit conversion techniques are employed for implementation with distributed transmission line. To validate the proposed dual-band BPF with controllable bandwidths, a low temperature co-fired ceramic (LTCC) transmission line as well as microstrip lines are used, respectively. The two types of design for the dual-band BPF have the same and significantly different fractional bandwidths (FBWs), respectively. The first type of dual-band BPF with same FBWs are implemented at 2.11-2.17 and 3.45-3.55 GHz. The second type of dual-band BPF with different FBWs are implemented at 3.40-3.60 and 5.15-5.25 GHz. The measured and theoretical results show good agreement, significantly validating the proposed frequency mapping function methodology.
Citation
Girdhari Chaudhary, Yongchae Jeong, Kwisoo Kim, and Dal Ahn, "Design of Dual-Band Bandpass Filters with Controllable Bandwidths Using New Mapping Function," Progress In Electromagnetics Research, Vol. 124, 17-34, 2012.
doi:10.2528/PIER11111407
References

1. Wu, Y. L., Y. A. Liu, S. L. Li, C. P. Yu, and X. Liu, "Closed form design method of an N-way dual-band Wilkinson hybrid power divider," Progress In Electromagnetics Research, Vol. 101, 97-114, 2010.
doi:10.2528/PIER09111906

2. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
doi:10.2528/PIER10110108

3. Abu-Hundrouss, A. M. and M. J. Lancaster, "Design of multiple-band microwave filters using cascaded filter elements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2109-2118, 2009.
doi:10.1163/156939309790109225

4. Hung, C. Y., R. Y. Yang, and Y. L. Lin, "A simple method to design a compact and high performance dual-band bandpass filter for GSM and WLAN," Progress In Electromagnetics Research C, Vol. 13, 187-193, 2010.
doi:10.2528/PIERC10040902

5. Lai, X., N. Wang, B. Wu, and C. H. Liang, "Design of dual-band filter based on OLRR and DSIR," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 209-218, 2010.
doi:10.1163/156939310790735723

6. Yang, R. Y., K. Hon, C. Y. Hung, and C. S. Ye, "Design of dual-band bandpass filters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetics Research, Vol. 105, 93-102, 2010.
doi:10.2528/PIER10042504

7. Liang, F., B. Luo, W. Lu, and X. Wang, "A compact dual-band filter with close passbands using asymmetric λ/4 resonator pairs with shared via-hole ground," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1289-1296, 2011.
doi:10.1163/156939311795761971

8. Tsai, L. C. and C. W. Hsue, "Dual-band bandpass filters using equal-length coupled serial-shunted lines and Z-transform technique," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1111-1117, Apr. 2004.
doi:10.1109/TMTT.2004.825680

9. Lai, M. I. and S. K. Jeng, "Compact microstrip dual-band bandpass filters design using genetic-algorithm techniques," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 160-168, Jan. 2006.
doi:10.1109/TMTT.2005.860327

10. Guan, , X., Z. Ma, P. Chai, Y. Kobayashi, T. Anada, and G. Hagiwara, "Synthesis of dual-band bandpass filters using successive frequency transformations and circuit conversions," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 3, 110-112, Mar. 2006.
doi:10.1109/LMWC.2006.869868

11. Liu, A. S., T. Y. Huang, and R. B. Wu, "A dual wideband filter design using frequency mapping and stepped impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 2921-2929, Dec. 2008.
doi:10.1109/TMTT.2008.2007357

12. Joshi, H. and W. J. Chappell, "Dual-band lumped element bandpass filter," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4169-4170, Dec. 2006.
doi:10.1109/TMTT.2006.885576

13. Mao, S. G. and M. S. Wu, "Design of artificial lumpedelement coplanar waveguide filters with controllable dual-passband responses," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 7, 1684-1692, Jul. 2008.
doi:10.1109/TMTT.2008.925573

14. Mokhtaari, M., J. Bornemann, K. Rambabu, and S. Amari, "Coupling matrix design of dual and triple passband filters," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 11, 3940-3946, Nov. 2006.
doi:10.1109/TMTT.2006.884687

15. Weng, M. H., C. H. Kao, and Y. C. Chang, "A compact dual-band bandpass filter with high band selectivity using cross-coupled asymmetric SIRs for WLANs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 161-168, 2010.
doi:10.1163/156939310790735679

16. Yang, R. Y., C. Y. Hung, and J. S. Lin, "A dual-band bandpass filter with an enhanced second passband performance using modifiable coupling," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 305-314, 2011.
doi:10.1163/156939311794362803

17. Ma, D. C., Z. Y. Xiao, L. L. Xiang, X. H. Wu, C. Y. Huang, and X. Kou, "Compact dual-band bandpass filter using folded SIR with two stubs for WLAN," Progress In Electromagnetics Research, Vol. 117, 357-364, 2011.

18. Lee, C. H., I. C. Wang, and C. I. G. Hsu, "Dual-band balanced BPF using λ/4 stepped-impedance resonators and folded feed lines," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2441-2449, 2009.

19. Alkanhal, M. A. S., "Dual-band bandpass filters using inverted stepped-impedance resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, 1211-1220, 2009.

20. Chiou, Y. C., P. S. Yang, J. T. Kuo, and C. Y. Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, No. 8-9, 23-36, 2010.
doi:10.2528/PIER10071608

21. Xiao, J. K. and H. F. Huang, "New dual-band bandpass filter with compact SIR structure," Progress In Electromagnetics Research Letters, Vol. 18, 125-134, 2010.
doi:10.2528/PIERL10082202

22. Sun, X. and E. L. Tan, "A novel dual-band bandpass filter using generalized trisection stepped impedance resonator with improved out-of-band performance," Progress In Electromagnetics Research Letters, Vol. 21, 31-40, 2011.

23. Wang, J. P., L. Wang, Y. X. Guo, and Y. X. Wang, "Miniaturized dual-mode bandpass filter with controllable harmonic response for dual-band applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1525-1533, 2009.
doi:10.1163/156939309789476482

24. Velazquez-Ahumada, M. D. C., J. Martel, F. Medina, and F. Mesa, "Application of stub loaded folded stepped impedance resonators to dual band filter design," Progress In Electromagnetics Research, Vol. 102, 107-124, 2010.
doi:10.2528/PIER10011406

25. Xu, K. D., Y. H. Zhang, C. L. Zhuge, and Y. Fan, "Miniaturized dual-band bandpass filter using short stub-loaded dual-mode resonators," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2264-2273, 2011.
doi:10.1163/156939311798147060

26. Chen, F. C. and J. M. Qiu, "Dual-band bandpass filter with controllable characteristics using stub-loaded resonators," Progress In Electromagnetics Research Letters, Vol. 28, 45-51, 2012.
doi:10.2528/PIERL11100904

27. Huang, C. Y., M. H. Weng, C. Y. Hung, and S. W. Lan, "Design of a dual-band bandpass filter for GSM and direct sequence ultra-wideband communication systems," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1605-1615, 2011.
doi:10.1163/156939311797164828

28. Kung, C. Y. and Y. C. Chen, "A novel compact 2.4/5.2 GHz dual wideband bandpass filter with deep transmission zero," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 617-628, 2011.
doi:10.1163/156939311794827168

29. Ji, Y. X., J. Xu, Y. M. Niu, C. Z. Hua, C. H. Chen, and W. Wu, "Compact and high performance bandpass filter based on an improved hybrid resonator using beeline compact microstrip resonator cell (BCMRC)," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1525-1535, 2011.
doi:10.1163/156939311797164990

30. Chaudhary, G., Y. Jeong, and J. Lim, "A broad-bandwidth dual-band bandpass filter design using composite right/left handed transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 2138-2147, 2011.
doi:10.1163/156939311798072045

31. Wu, G. L., W. Mu, X. W. Dai, and Y. C. Jia, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301

32. Wu, Y. L., C. Lia, and X. Z. Xiong, "A dual-wideband bandpass filter based on E-shaped microstrip SIR with improved upper-stoband performance," Progress In Electromagnetics Research, Vol. 108, 141-153, 2010.
doi:10.2528/PIER10071802

33. Weng, M. H., H. W. Wu, and Y. K. Su, "Compact and low loss dual bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 3, 187-189, Mar. 2007.
doi:10.1109/LMWC.2006.890463

34. Guan, X., Z. Ma, P. Cai, T. anada, and G. Hagiwara, "Design of microstrip dual-band bandpass filter with controllable bandwidth," Microw. Optical Tech. Letters, Vol. 49, No. 3, 740-742, Mar. 2007.
doi:10.1002/mop.22232

35. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks and Coupling Structures, McGraw-Hill Book Co., New York, NY, 1964.