Vol. 124
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-02-08
Improvement of Iterative Physical Optics Using Previous Information to Guide Initial Guess
By
Progress In Electromagnetics Research, Vol. 124, 473-486, 2012
Abstract
We propose an improved method of iterative physical optics (IPO) to analyze electromagnetic scattering by open-ended cavities. The traditional IPO method uses a fixed number of iterations; if this number is too small, the accuracy of the estimated monostatic radar cross section (RCS) of open-ended cavities degrades as the incident angle of the incident field increases. The recently-introduced adaptive iterative physical optics-change rate (AIPO-CR) method uses a variable number of iterations; compared to the IPO method, it predicts monostatic RCS more accurately, but requires more computation time. In this paper, a new algorithm is devised to improve both the monostatic RCS prediction accuracy of the IPO method, and the computational efficiency of the AIPO-CR method. The proposed method, iterative physical optics-retained previous solution (IPO-RPS), calculates the currents at one incident angle, then reuses them as the initial currents of iterations for the next incident angle. In simulations of the monostatic RCS for various open-ended cavities, the IPO-RPS method was more accurate than the traditional IPO method, and computationally more efficient than both the IPO and AIPO-CR methods.
Citation
Huicheol Chin, Jae-Hyun Yeom, Hyo-Tae Kim, and Kyung-Tae Kim, "Improvement of Iterative Physical Optics Using Previous Information to Guide Initial Guess," Progress In Electromagnetics Research, Vol. 124, 473-486, 2012.
doi:10.2528/PIER12011103
References

1. Harringto, R. F., Field Computation by Moment Methods, Macmillan, 1968.

2. Liu, Z.-L. and J. Yang, "Analysis of electromagnetic scattering with higher-order moment method and nurbs model," Progress In Electromagnetics Research, Vol. 96, 83-100, 2009.
doi:10.2528/PIER09071704

3. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley, 2002.

4. Zhang, H.-W., X.-W. Zhao, Y. Zhang, D. Garcia-Donoro, W.-X. Zhao, and C.-H. Liang, "Analysis of a large scale narrow-wall slotted waveguide array by parallel mom out-of-core solver using the higher order basis functions," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1953-1965, 2010.

5. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, 2000.

6. Chen, C.-Y., Q. Wu, X.-J. Bi, Y.-M. Wu, and L. W. Li, "Characteristic analysis for fdtd based on frequency response," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 283-292, 2010.
doi:10.1163/156939310790735796

7. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures ," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/PIER10102707

8. Kline, M. and I. Kay, Electromagnetic Theory and Geometrical Optics, Wiley Interscience, New York, 1965.

9. Zhang, Z. and W.-B. Dou, "Analysis of THz imaging system with a refractive small lens array by a hybrid numerical method," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1317-1328, 2011.
doi:10.1163/156939311795761980

10. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

11. Klement, D., J. Preissner, and V. Stein, "Special problems in applying the physical optics method for backscatter computations of complicated objects," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 2, 228-237, Feb. 1988.
doi:10.1109/8.1100

12. Ma, J., S.-X. Gong, J. Ling, Y.-X. Xu, and W. Jiang, "Radiation analysis of antenna around electrically large platform using Improved MoM-PO hybrid method," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 577-587, 2011.
doi:10.1163/156939311794500241

13. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 252-258, Mar. 1984.
doi:10.1109/TAP.1984.1143303

14. Zhang, T.-L., L. Chen, Z.-H. Yan, and B. Li, "Design of dual offset shaped reflector antenna based on DEGL algorithm," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 723-732, 2011.
doi:10.1163/156939311794827339

15. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, 2007.
doi:10.1201/9781420061468

16. Ling, H., R.-C. Chou, and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 2, 194-205, Feb. 1989.
doi:10.1109/8.18706

17. Gao, P. C., Y. B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807

18. Lim, H., J.-H. Park, J.-H. Yoo, C. H. Kim, K. Kwon, and N. H. Myung, "Joint time-frequency analysis of RADAR micro-doppler signatures from aircraft engine models," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1069-1080, 2011.
doi:10.1163/156939311795762006

19. Obelleiro-Basteiro, F., J. L. Rodriguez, and R. J. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 4, 356-361, Apr. 1995.
doi:10.1109/8.376032

20. Hemon, R., P. Pouliguen, H. He, J. Saillard, and J.-F. Damiens, "Computation of EM field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics," Progress In Electromagnetics Research, Vol. 80, 77-105, 2008.
doi:10.2528/PIER07110803

21. Li, J., B. Wei, Q. He, L.-X. Guo, and D.-B. Ge, "Time-domain iterative physical optics method for analysis of EM scattering from the target half buried in rough surface: PEC case," Progress In Electromagnetics Research, Vol. 121, 391-408, 2011.
doi:10.2528/PIER11082906

22. Choi, S. H., D. W. Soe, and N. H. Myung, "Scattering analysis of open-ended cavity with inner object," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1689-1702, 2007.

23. Lim, H. and N.-H. Myung, "A novel hybrid AIPO-MoM technique for jet engine modulation analysis," Progress In Electromagnetics Research, Vol. 104, 85-97, 2010.
doi:10.2528/PIER10033103

24. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and E±cient Algorithm in Computational Electromagnetics, Artech House, 2001.

25. , , , FEKO, EM Software & Systems, S.A. (Pty) Ltd., www.feko.info.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.