Vol. 126
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-08
Effect of Realistic Modeling of Deep Brain Stimulation on the Prediction of Volume of Activated Tissue
By
Progress In Electromagnetics Research, Vol. 126, 1-16, 2012
Abstract
Deep brain stimulation (DBS) is a well-established treatment for Parkinson's disease, essential tremor and dystonia. It has also been successfully applied to treat various other neurological and psychiatric conditions including depression and obsessive-compulsive disorder. Numerous computational models, mostly based on the Finite Element Method (FEM) approach have been suggested to investigate the biophysical mechanisms of electromagnetic wave-tissue interaction during DBS. These models, although emphasizing the importance of various electrical and geometrical parameters, mostly have used simplified geometries over a tightly restricted tissue volume in the case of monopolar stimulation. In the present work we show that topological arrangements and geometrical properties of the model have a significant effect on the distribution of voltages in the concerned tissues. The results support reconsidering the current approach for modeling monopolar DBS which uses a restricted cubic area extended a few centimeters around the active electrode to predict the volume of activated tissue. We propose a new technique called multi-resolution FEM modeling, which may improve the accuracy of the prediction of volume of activated tissue and yet be computationally tractable on personal computers.
Citation
Laleh Golestanirad, Alberto Pradas Izquierdo, Simon J. Graham, Juan Mosig, and Claudio Pollo, "Effect of Realistic Modeling of Deep Brain Stimulation on the Prediction of Volume of Activated Tissue," Progress In Electromagnetics Research, Vol. 126, 1-16, 2012.
doi:10.2528/PIER12013108
References

1. Rodriguez-Oroz, M. C., J. A. Obeso, A. E. Lang, J.-L. Houeto, P. Pollak, S. Rehncrona, J. Kulisevsky, A. Albanese, J. Volkmann, M. I. Hariz, N. P. Quinn, J. D. Speelman, J. Guridi, I. Zamarbide, A. Gironell, J. Molet, B. Pascual-Sedano, B. Pidoux, Y. Agid, J. Xie, A.-L. Benabid, A. M. Lozano, J. Saint-Cyr, L. Romito, M. F. Contarino, M. Scerrati, V. Fraix, and N. V. Blercom, "Bilateral deep brain stimulation in Parkinson's disease: A multicentre study with 4 years follow-up," Brain, Vol. 128, No. 10, 2240-2249, Oct. 2005. [Online]., Available: http://dx.doi.org/10.1093/brain/awh571.

2. Wider, C., C. Pollo, J. Bloch, P. R. Burkhard, and F. J. Vingerhoets, "Long-term outcome of 50 consecutive Parkinson's disease patients treated with subthalamic deep brain stimulation," Parkinsonism Relat. Disord., Vol. 14, No. 2, 114-119, 2008. [Online]., http://dx.doi.org/10.1016/j.parkreldis.2007.06.012.
doi:10.1016/j.parkreldis.2007.06.012

3. Gabriels, L., P. Cosyns, B. Nuttin, H. Demeulemeester, and J. Gybels, "Deep brain stimulation for treatment-refractory obsessive compulsive disorder: Phsychopathological and neuropsychological outcome in three cases," Acta Psychiatr. Scand., Vol. 107, 275-282, 2003.
doi:10.1034/j.1600-0447.2003.00066.x

4. McIntyre, C. C., M. Savasta, L. Kerkerian-Le Goff, and J. L. Vitek, "Uncovering the mechanism(s) of action of deep brain stimulation: Activation, inhibition, or both," Clin. Neurophysiol., Vol. 115, No. 6, 1239-1248, Jun. 2004. [Online]., Available: http://dx.doi.org/10.1016/j.clinph.2003.12.024.
doi:10.1016/j.clinph.2003.12.024

5. Moro, E., J. A. Esselink, J. Xie, A. L. Benabid, and P. Pollak, "The impact on parkinsons disease of electrical parameter settings in STN stimulation," Neurology, Vol. 59, 706-713, 2002.

6. McIntyre, C. C., M. Savasta, B. L. Walter, and J. L. Vitek, "How does deep brain stimulation work? Present understanding and future questions," J. Clin. Neurophysiol., Vol. 21, 40-50, 2004.

7. Walckiers, G., B. Fuchs, J.-P. Thiran, J. R. Mosig, and C. Pollo, "Influence of the implanted pulse generator as reference electrode in ¯nite element model of monopolar deep brain stimulation," J. Neurosci. Methods, Vol. 186, No. 1, 90-96, Jan. 2010. [Online]., Available: http://www.ncbi.nlm.nih.gov/pubmed/19895845.
doi:10.1016/j.jneumeth.2009.10.012

8. , , , EPFL Computer Science Departement, Visible Human Project, [Online]. Available: http://visiblehuman.epfl.ch/.
doi:10.1007/BF02637018

9. Van den Broek, S. P., H. Zhou, and M. J. Peters, "Computation of neuromagnetic fields using finite-element method and Biot-Savart law," Med. Biol. Eng. Comput., Vol. 34, No. 1, 21-26, 1996.

10. Miller, C. E. and C. S. Henriquez, "Finite element analysis of bioelectric phenomena," Crit. Rev. Biomed. Eng., Vol. 18, No. 3, 207-233, 1990.
doi:10.1109/10.32099

11. Rattay, F., "Analysis of models for extracellular fiber stimulation," IEEE Trans. Biomed. Eng., Vol. 36, No. 7, 676-682, Jul. 1989.

12. , , , ANSYS, Inc., Maxwell 3D, [Online]. Available: http://www.ansoft.com/products/em/maxwell.
doi:10.1016/j.jneumeth.2009.07.005

13. Yousif, N., R. Bayford, S. Wang, and X. Liu, "Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation ," Neuroscience, Vol. 152, No. 68391, 2008.
doi:10.1109/TMAG.2010.2082556

14. Yousif, N. and X. Liu, "Investigating the depth electrode-brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution," J. Neurosci. Methods, Vol. 184, No. 1, 142-151, 2009.
doi:10.1177/107385840100700207

15. , , , Visage Imaging GmbH, Amira 5.2-User's guide and reference manual, [Online]. Available: http://www.amira.com/, 2001 .
doi:10.1016/j.clinph.2005.06.023

16. Golestanirad, L., M. Mattes, J. R. Mosig, and C. Pollo, "Effect of model accuracy on the result of computed current densities in the simulation of transcranial magnetic stimulation," IEEE Transactions on Magnetics, Vol. 46, No. 12, 4046-4051, 2010.
doi:10.1016/j.clinph.2005.10.007

17. Hines, M. L. and N. T. Carnevale, "Neuron: A tool for neuroscientists," Neuroscientist, Vol. 7, No. 2, 123-135, Apr. 2001.

18. Butson, C. R. and C. C. McIntyre, "Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation," Clin. Neurophysiol., Vol. 116, No. 10, 2490-2500, Oct. 2005. [Online]., Available: http://dx.doi.org/10.1016/j.clinph.2005.06.023.
doi:10.1109/10.605429

19. Butson, C. R., C. B. Maks, and C. C. McIntyre, "Sources and effects of electrode impedance during deep brain stimulation," Clin. Neurophysiol., Vol. 117, No. 2, 447-454, 2006.
doi:10.1002/mds.10162

20. Ramon, C., P. Schimpf, and J. Haueisen, "In uence of head models on eeg simulations and inverse source localizations," BioMedical Engineering OnLine, 2006.
doi:10.2528/PIER08040504

21. Haueisen, J., C. Ramon, M. Eiselt, H. Brauer, and H. Nowak, "In uence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head," IEEE Trans. Biomed. Eng., Vol. 44, No. 8, 727-735, Aug. 1997. [Online]., Available: http://www.ncbi.nlm.nih.gov/pubmed/9254986.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.

22. Volkmann, J., J. Herzog, F. Kopper, and G. Deuschl, "Introduction to the programming of deep brain stimulators," Mov. Disord., Vol. 17, No. 3:S, 181-187, 2002.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.

23. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.