Vol. 129

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-07-11

Field Approach in the Transformation Optics Concept

By Andrey V. Novitsky, Sergei V. Zhukovsky, Leonid M. Barkovsky, and Andrei V. Lavrinenko
Progress In Electromagnetics Research, Vol. 129, 485-515, 2012
doi:10.2528/PIER12050902

Abstract

An alternative, field-based formulation of transformation optics is proposed. Field transformations are expressed in the language of boundary conditions for the electromagnetic fields facilitated through the introduction of generalized potential functions. It is shown that the field-based approach is equivalent to the conventional coordinate-transformation approach but is preferable when looking for specific field distribution. A set of example devices such as invisibility cloaks, concentrators, rotators, and transformation optics lenses capable of creating light beams with predetermined field distribution (e.g., Gaussian and sinusoidal) is studied to validate the effectiveness of the field-based formulation. As for the boundary conditions for the cloaked region the absence of the normal component of the Poynting vector is justified. In the frames of the field-based approach the physical reasons behind infinite components (singularities) of the material parameters of transformation optics devices are straightforwardly revealed.

Citation


Andrey V. Novitsky, Sergei V. Zhukovsky, Leonid M. Barkovsky, and Andrei V. Lavrinenko, "Field Approach in the Transformation Optics Concept," Progress In Electromagnetics Research, Vol. 129, 485-515, 2012.
doi:10.2528/PIER12050902
http://www.jpier.org/PIER/pier.php?paper=12050902

References


    1. Dolin, L., "About the possibility of three-dimensional electromagnetic systems with inhomogeneous anisotropic filling," Izvestiya Vuzov: Radiophysics, Vol. 4, 964-967, 1961.

    2. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," J. Mod. Opt., Vol. 43, 773-793, 1996.
    doi:10.1080/09500349608232782

    3. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1783, 2006.
    doi:10.1126/science.1125907

    4. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
    doi:10.1126/science.1126493

    5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    6. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
    doi:10.1016/S0079-6638(08)00202-3

    7. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, Mineola, 2010.

    8. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
    doi:10.1103/PhysRevE.74.036621

    9. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, 9794-9804, 2006.
    doi:10.1364/OE.14.009794

    10. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Photonics, Vol. 3, 461-463, 2009.
    doi:10.1038/nphoton.2009.117

    11. Qiu, C.-W., L. Hu, B. Zhang, B.-I. Wu, S. G. Johnson, and J. D. Joannopoulos, "Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings," Opt. Express, Vol. 17, 13467-13478, 2009.
    doi:10.1364/OE.17.013467

    12. Kwon, D. and D. H. Werner, "Two-dimensional eccentric elliptic electromagnetic cloaks," Appl. Phys. Lett., Vol. 92, 013505, 2008.
    doi:10.1063/1.2830698

    13. Yan, M., W. Yan, and M. Qiu, "Invisibility cloaking by coordinate transformation," Prog. Opt., Vol. 52, 261-304, 2009.
    doi:10.1016/S0079-6638(08)00006-1

    14. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007.
    doi:10.1038/nphoton.2007.28

    15. Kildishev, A. V., W. Cai, U. K. Chettiar, and V. M. Shalaev, "Transformation optics: Approaching broadband electromagnetic cloaking," New J. Phys., Vol. 10, 115029, 2008.
    doi:10.1088/1367-2630/10/11/115029

    16. Kildishev, A. V. and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett., Vol. 33, 43-45, 2008.
    doi:10.1364/OL.33.000043

    17. Nicolet, A., F. Zolla, and S. Guenneau, "Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section," Opt. Lett., Vol. 33, 1584-1586, 2008.
    doi:10.1364/OL.33.001584

    18. Greanleaf, A., Y. Kurilev, M. Lassas, and G. Uhlmann, "Invisibility and inverse problems," Bulletin of the Americam Mathematical Society, Vol. 46, 55-97, 2009.
    doi:10.1090/S0273-0979-08-01232-9

    19. Luo, Y., H. Chen, J. Zhang, L. Ran, and J. A. Kong, "Design and analytical fullwave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations," Phys. Rev. B, Vol. 77, 125127, 2008.
    doi:10.1103/PhysRevB.77.125127

    20. Zharova, N. A., I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, "Ideal and nonideal invisibility cloaks," Opt. Express, Vol. 16, 21369-21374, 2008.
    doi:10.1364/OE.16.021369

    21. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, 568-571, 2009.
    doi:10.1038/nmat2461

    22. Urzhumov, Y. A. and D. R. Smith, "Transformation optics with photonic band gap media," Phys. Rev. Lett., Vol. 105, 163901, 2010.
    doi:10.1103/PhysRevLett.105.163901

    23. Han, T., C. Qiu, and X. Tang, "An arbitrarily shaped cloak with nonsingular and homogeneous parameters designed using a twofold transformation," J. Opt., Vol. 12, 095103, 2010.
    doi:10.1088/2040-8978/12/9/095103

    24. Tuniz, A., B. T. Kuhlmey, P. Y. Chen, and S. C. Fleming, "Weaving the invisible thread: Design of an optically invisible metamaterial fibre," Opt. Express, Vol. 18, 18095-18105, 2010.
    doi:10.1364/OE.18.018095

    25. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photon. Nanostruct.: Fundam. Applic., Vol. 6, 87, 2008.
    doi:10.1016/j.photonics.2007.07.013

    26. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 241105, 2007.
    doi:10.1063/1.2748302

    27. Lai, Y., H. Chen, Z.-Q. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett., Vol. 102, 093901, 2009.
    doi:10.1103/PhysRevLett.102.093901

    28. Lai, Y., J. Ng, H. Chen, D. Z. Han, J. J. Xiao, Z.-Q. Zhang, and C. T. Chan, "Illusion optics: The optical transformation of an object into another object," Phys. Rev. Lett., Vol. 102, 253902, 2009.
    doi:10.1103/PhysRevLett.102.253902

    29. Li, C., X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, "Experimental realization of a circuit-based broadband illusionoptics analogue," Phys. Rev. Lett., Vol. 105, 233906, 2010.
    doi:10.1103/PhysRevLett.105.233906

    30. Schultheiss, V. H., S. Batz, A. Szameit, F. Dreisow, S. Nolte, A. Tunnermann, S. Longhi, and U. Peschel, "Optics in curved space," Phys. Rev. Lett., Vol. 105, 143901, 2010.
    doi:10.1103/PhysRevLett.105.143901

    31. Luo, Y., L.-X. He, Y. Wang, H. L. W. Chan, and S.-Z. Zhu, "Changing the scattering of sheltered targets," Phys. Rev. A, Vol. 83, 043809, 2011.
    doi:10.1103/PhysRevA.83.043809

    32. Han, T., C.-W. Qiu, and X. Tang, "Distributed external cloak without embedded antiobjects," Opt. Lett., Vol. 35, 2642-2644, 2010.
    doi:10.1364/OL.35.002642

    33. Jiang, W. X., T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, "Cylindrical-to-plane-wave conversion via embedded optical transformation," Appl. Phys. Lett., Vol. 92, 261903, 2008.
    doi:10.1063/1.2953447

    34. Ward, A. J. and J. B. Pendry, "Calculating photonic Green's functions using a nonorthogonal finite-difference time-domain method," Phys. Rev. B, Vol. 58, 7252-7259, 1998.
    doi:10.1103/PhysRevB.58.7252

    35. Shyroki, D. M., "Note on transformation to general curvilinear coordinates for Maxwell's curl equations," , 2003, Preprint, arXiv:physics/0307029v2 .
    doi:10.1109/LMWC.2006.884768

    36. Shyroki, D. M., "Squeezing of open boundaries by Maxwell-consistent real coordinate transformation," IEEE Microwave and Wireless Components Letters, Vol. 16, 576-578, 2006.
    doi:10.1109/TMTT.2007.897841

    37. Shyroki, D. M., "Efficient Cartesian-grid-based modeling of rotationally symmetric bodies," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1132-1138, 2007.
    doi:10.1109/TMTT.2007.914637

    38. Shyroki, D. M., "Exact equivalent straight waveguide model for bent and twisted waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 414-419, 2008.
    doi:10.1088/1367-2630/10/11/115033

    39. Smolyaninov, I. I., "Transformational optics of plasmonic metamaterials," New J. Phys., Vol. 10, 115033, 2008.
    doi:10.1021/nl100800c

    40. Huidobro, P. A., M. L. Nesterov, L. Martin-Moreno, and F. J. Garca-Vidal, "Transformation optics for plasmonics," Nano Lett., Vol. 10, 1985-1890, 2010.
    doi: --- Either ISSN or Journal title must be supplied.

    41. Liu, Y., T. Zentgraf, G. Bartal, and X. Zhang, "Transformational plasmonics," Nano Lett., Vol. 10, 1991-1997, 2010.
    doi:10.1364/OE.18.012027

    42. Kadic, M., S. Guenneau, and S. Enoch, "Transformational plasmonics: Cloak, concentrator and rotator," Opt. Express, Vol. 18, 12027-12032, 2010.
    doi:10.1103/PhysRevLett.105.233901

    43. Aubry, A., D. Y. Lei, S. A. Maier, and J. B. Pendry, "Interaction between plasmonic nanoparticles revisited with transformation optics," Phys. Rev. Lett., Vol. 105, 233901, 2010.
    doi:10.1088/1367-2630/9/3/045

    44. Cummer, S. A. and D. Schurig, "One path to acoustic cloaking," New J. Phys., Vol. 9, 45, 2007.
    doi:10.1088/0022-3727/43/11/113001

    45. Chen, H. and C. T. Chan, "Acoustic cloaking and transformation acoustics," J. Phys. D, Vol. 43, 113001, 2010.
    doi:10.1103/PhysRevLett.101.134501

    46. Farhat, M., S. Enoch, S. Guenneau, and A. B. Movchan, "Broadband cylindrical acoustic cloak for linear surface waves in a fluid," Phys. Rev. Lett., Vol. 101, 134501, 2008.
    doi:10.1103/PhysRevLett.106.253901

    47. Popa, B.-I., L. Zigoneanu, and S. A. Cummer, "Experimental acoustic ground cloak in air," Phys. Rev. Lett., Vol. 106, 253901, 2011.
    doi:10.1063/1.3068749

    48. Alitalo, P., F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, "Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks," Appl. Phys. Lett., Vol. 94, 014103, 2009.
    doi:10.1103/PhysRevLett.103.103905

    49. Tretyakov, S., P. Alitalo, O. Luukkonen, and C. Simovski, "Broadband electromagnetic cloaking of long cylindrical objects," Phys. Rev. Lett., Vol. 103, 103905, 2009.
    doi:10.1126/science.1166949

    50. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009.

    51. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nat. Commun., Vol. 1, 21, 2010.
    doi:10.1038/ncomms1176

    52. Chen, X., Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nat. Commun., Vol. 2, 176, 2011.
    doi:10.1103/PhysRevLett.106.033901

    53. Zhang, B., Y. Luo, X. Liu, and G. Barbastathis, "Macroscopic invisible cloak for visible light," Phys. Rev. Lett., Vol. 106, 033901, 2011.
    doi:10.1103/PhysRevLett.102.213901

    54. Smolyaninov, I. I., V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, "Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking," Phys. Rev. Lett., Vol. 102, 213901, 2009.
    doi:10.1126/science.1186351

    55. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, 337, 2010.
    doi:10.1364/OL.36.002059

    56. Fischer, J., T. Ergin, and M. Wegener, "Three-dimensional polarization-independent visible-frequency carpet invisibility cloak," Opt. Lett., Vol. 36, 2059-2061, 2011.
    doi:10.1088/1464-4258/11/1/015104

    57. Collins, P. and J. McGuirk, "A novel methodology for deriving improved material parameter sets for simplified cylindrical cloaks," J. Opt. A: Pure Appl., Vol. 11, 015104, 2009.
    doi:10.1063/1.3026532

    58. Jiang, W. X., T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, "Invisibility cloak without singularity," Appl. Phys. Lett., Vol. 93, 194102, 2008.
    doi:10.1063/1.3168652

    59. Hu, J., X. Zhou, and G. Hu, "Nonsingular two dimensional cloak of arbitrary shape," Appl. Phys. Lett., Vol. 95, 011107, 2009.
    doi:10.1103/PhysRevLett.99.233901

    60. Yan, M., Z. Chao, and M. Qiu, "Cylindrical invisibility cloak with simplified material parameters is inherently visible," Phys. Rev. Lett., Vol. 99, 233901, 2007.
    doi:10.1103/PhysRevLett.101.203901

    61. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
    doi:10.1364/JOSAB.28.000922

    62. Huang, L., D. Zhou, J. Wang, Z. Li, X. Chen, and W. Lu, "Generalized transformation for nonmagnetic invisibility cloak with minimized scattering," J. Opt. Soc. Am. B, Vol. 28, 922-928, 2011.
    doi:10.1364/OE.18.013038

    63. Han, T. and C.-W. Qiu, "Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks," Opt. Express, Vol. 18, 13038-13043, 2010.
    doi:10.1103/PhysRevLett.99.063903

    64. Chen, Chen, B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
    doi:10.1088/1367-2630/11/11/113001

    65. Novitsky, A., C.-W. Qiu, and S. Zouhdi, "Transformation-based spherical cloaks designed by an implicit transformation-independent method: Theory and optimization," New J. Phys., Vol. 11, 113001, 2009.
    doi:10.1103/PhysRevE.80.016604

    66. Qiu, C.-W., A. Novitsky, H. Ma, and S. Qu, "Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloaks," Phys. Rev. E, Vol. 80, 016604, 2009.
    doi:10.1103/PhysRevE.72.016623

    67. Alu, A. and N. Engheta, "Achiving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.
    doi:10.1088/1367-2630/14/1/013054

    68. Rainwater, D., A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, "Experimental verification of three-dimensional plasmonic cloaking in free-space," New J. Phys., Vol. 14, 013054, 2012.
    doi:10.1103/PhysRevLett.102.233901

    69. Alu, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, 233901, 2009.
    doi:10.1088/1367-2630/10/11/115028

    70. Tretyakov, S. A., I. S. Nefedov, and P. Alitalo, "Generalized field-transforming metamaterials," New J. Phys., Vol. 10, 115028, 2008.
    doi:10.1088/1367-2630/10/11/115022

    71. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, 115022, 2008.
    doi:10.1088/2040-8978/13/3/035104

    72. Novitsky, A. V., "Inverse problem in transformation optics," J. Opt., Vol. 13, 035104, 2011.
    doi:10.1103/PhysRevLett.58.1499

    73. Durnin, J., J. J. Miceli, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, 1499-1504, 1987.
    doi:10.1103/PhysRevLett.99.213901

    74. Siviloglou, G. A., J. Broky, A. Dogariu, and D. N. Christodoulides, "Observation of accelerating Airy beams," Phys. Rev. Lett., Vol. 99, 213901, 2007.
    doi:10.1088/2040-8978/13/2/024003

    75. McCall, M. W., A. Favaro, P. Kinsler, and A. Boardman, "A spacetime cloak, or a history editor," J. Opt., Vol. 13, 024003, 2011.
    doi:10.1088/2040-8978/13/2/024007

    76. Cummer, S. A. and R. T. Thompson, "Frequency conversion by exploiting time in transformation optics," J. Opt., Vol. 13, 024007, 2011.
    doi:10.1038/nature10695

    77. Fridman, M., A. Farsi, Y. Okawachi, and A. L. Gaeta, "Demonstration of temporal cloaking," Nature, Vol. 481, 62-65, 2012.
    doi:10.1364/JOSAB.28.001082

    78. , , , http://www.comsol.com/.
    doi:10.1088/2040-8978/13/7/075103

    79. Zang, Zang and C. Jiang, "A rotatable and amplifying optical transformation device," J. Opt. Soc. Am. B, Vol. 28, 1082-1087, 2011.

    80. Perczel, J., C. Garcia-Meca, and U. Leonhardt, "Partial transmutation of singularities in optical instruments," J. Opt., Vol. 13, 075103, 2011.

    81. Fedorov, F. I., Optics of Anisotropic Media, Izdatelstvo AN BSSR, Minsk, 1958.

    82. Fedorov, F. I., Theory of Gyrotropy, Nauka i Tehnika, Minsk, 1976.

    83. Fedorov, F. I. and V. V. Filippov, Reflection and Transmission of Light by Transparent Crystals, Nauka i Tehnika, Minsk, 1976.

    84. Fedorov, F. I., Theory of Elastic Waves in Crystals, Plenum Press, New York, 1968.

    85. Fedorov, F. I., Lorentz Group, Nauka, Moscow, 1979.
    doi:10.1103/PhysRevD.5.787

    86. Fedorov, F. I., "To the theory of total reflection," Doklady Akademii Nauk SSSR, Vol. 105, 465-469, 1955.
    doi:10.1103/PhysRevLett.93.083901

    87. Imbert, C., "Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam," Phys. Rev. D, Vol. 5, 787-796, 1972.

    88. Onoda, M., S. Murakami, and N. Nagaosa, "Hall effect of light," Phys. Rev. Lett., Vol. 93, 083901, 2004.

    89. Serdyukov, A. N., I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.
    doi: --- Either ISSN or Journal title must be supplied.

    90. Post, E. J., Formal Structure of Electromagnetics, Noth-Holland Publishing Company, Amsterdam, 1962.
    doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.