Vol. 136
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-23
A Family of Ultra-Thin, Polarization-Insensitive, Multi-Band, Highly Absorbing Metamaterial Structures
By
Progress In Electromagnetics Research, Vol. 136, 579-594, 2013
Abstract
The systematic design of size-confined, polarization-independent metamaterial absorbers that operate in the microwave regime is presented in this paper. The novel unit cell is additionally implemented to create efficient multi-band and broadband structures by exploiting the scalability property of metamaterials. Numerical simulations along with experimental results from fabricated prototypes verify the highly absorptive performance of the devices, so developed. Moreover, a detailed qualitative and quantitative analysis is provided in order to attain a more intuitive and sound physical interpretation of the underlying absorption mechanism. The assets of the proposed concept, applied to the design of different patterns, appear to be potentially instructive for various EMI/EMC configurations.
Citation
Theofano M. Kollatou, Alexandros I. Dimitriadis, Stylianos Assimonis, Nikolaos V. Kantartzis, and Christos S. Antonopoulos, "A Family of Ultra-Thin, Polarization-Insensitive, Multi-Band, Highly Absorbing Metamaterial Structures," Progress In Electromagnetics Research, Vol. 136, 579-594, 2013.
doi:10.2528/PIER12123106
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New York, 2006.
doi:10.1002/0471754323

2. Marqués, R., F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, John Wiley & Sons, New York, 2008.

3. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617-1-11, 2005.

4. Landy, N. Y., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-1-4, 2008.
doi:10.1103/PhysRevLett.100.207402

5. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

6. Bilotti, F., A. Toscano, K. B. Alici, E. Ozbay, and L. Vegni, "Design of miniaturized narrowband absorbers based on resonant-magnetic inclusions," IEEE Trans. Electomagn. Compat., Vol. 53, No. 63, 63-72, 2011.
doi:10.1109/TEMC.2010.2051229

7. Liu, H. X., B. F. Yao, L. Li, and X. W. Shi, "Analysis and design of thin planar absorbing structures using Jerusalem cross slot," Progress In Electromagnetic Research B, Vol. 31, 261-281, 2011.

8. Zhu, W., X. Zhao, B. Gong, L. Liu, and B. Su, "Optical metamaterial absorber based on leaf-shaped cells," Appl. Phys. A --- Mater., Vol. 102, No. 1, 147-151, 2011.
doi:10.1007/s00339-010-6057-6

9. Ye, D., Z. Wang, Z. Wang, K. Xu, B. Zhang, J. Huangfu, C. Li, and L. Ran, "Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces ," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5164-5172, 2012.
doi:10.1109/TAP.2012.2207686

10. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

11. Lee, J. and S. Lim, "Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance," Electron. Lett., Vol. 47, 8-9, 2011.
doi:10.1049/el.2010.2770

12. He, X. J., Y. Wang, J. M. Wang, and T. L. Gui, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetic Research, Vol. 115, 381-397, 2011.

13. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. vvvvvvv1, 014909-1-8, 2011.

14. Zhao, Y., F. Chen, H. Chen, N. Li, Q. Shen, and L. Zhang, "The microstructure design optimization of negative index metamaterials using genetic algorithm," Progress In Electromagnetics Research Letters, Vol. 22, 95-108, 2011.

15. Shen, X., T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Express, Vol. 19, 9401-9407, 2011.
doi:10.1364/OE.19.009401

16. Fallahzadeh, S., K. Forooraghi, and Z. Atlasbaf, "Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber," Progress In Electromagnetic Research Letters, Vol. 35, 135-144, 2012.

17. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetic Research M, Vol. 77, 191-201, 2012.

18. Ye, Q., Y. Liu, H. Lin, M. Li, and H. Yang, "Multi-band metamaterial absorber made of multi-gap SRRs structure," Appl. Phys. A --- Mater., Vol. 107, No. 1, 155-160, 2012.
doi:10.1007/s00339-012-6796-7

19. Lee, H.-M. and H.-S. Lee, "A metamaterial based microwave absorber composed of coplanar electric-field-coupled resonator and wire array," Progress In Electromagnetic Research C, Vol. 34, 111-121, 2013.

20. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section ," Progress In Electromagnetic Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

21. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strkwerda, D. Shrekenhammer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Appl. Phys., Vol. 43, 22510-1-5, 2010.

22. Veysi, M., M. Kamyab, J. Moghaddasi, and A. Jafargholi, "Transmission phase characterizations of metamaterial covers for antenna application," Progress In Electromagnetics Research Letters, Vol. 21, 49-57, 2011.

23. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating ," ACS Nano, Vol. 5, No. 6, 4641-4647, 2011.
doi:10.1021/nn2004603

24. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetic Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401

25. Koledintseva, M. Y., J. Huang, J. L. Drewniak, R. E. DuBroff, and B. Archambeault, "Modeling of metasheets embedded in dielectric layers," Progress In Electromagnetics Research B, Vol. 44, 89-116, 2012.

26. Chen, H. T., J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials," Opt. Express, Vol. 15, 1084-1095, 2007.
doi:10.1364/OE.15.001084

27. Computer Simulation Technology, , CST MWSTM: Computer Simulation Technology: Microwave Studio, 2010.

28. Gu, S., J. P. Barrett, T. H. Hand, B. I. Popa, and S. A. Cummer, "A broadband low-reflection metamaterial absorber," J. Appl. Phys., Vol. 108, 064913-1-6, 2010.
doi:10.1063/1.3485808

29. Sun, J., L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Opt. Express, Vol. 19, No. 22, 21155-21162, 2011.
doi:10.1364/OE.19.021155

30. Cheng, Y. Z., Y. Wang, Y. Nie, R. Z. Gong, X. Xiong, and X. Wang, "Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements," J. Appl. Phys., Vol. 111, 044902-1-4, 2012.