Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-18
Two Approaches for Incoherent Propagation of Light in Rigorous Numerical Simulations
By
Progress In Electromagnetics Research, Vol. 137, 187-202, 2013
Abstract
In multidimensional numerical simulations of optoelectronic devices the rigorous Maxwell equations are solved in different ways. However, numerically efficient incoherent propagation of light inside the layers has not been resolved yet. In this paper we present two time- and resource-efficient approaches for optical simulations of incoherent layers embedded in multilayer structures: (a) phase matching and (b) phase elimination approach. The approaches for simulating the incoherent propagation of light in thick layers are derived from Maxwell equations. Both approaches can be applied to any layer in the structure regardless of the position inside the structure and the number of incoherent layers. In rigorous simulations, for low absorbing thick layers scaling down the thickness and increasing extinction coefficient of the layer proportionally is implemented to shorten computational time. The simulation results are verified with the experiment on two types of structures: a bare glass incoherent layer and an amorphous silicon solar cell.
Citation
Andrej Campa, Janez Krc, and Marko Topic, "Two Approaches for Incoherent Propagation of Light in Rigorous Numerical Simulations," Progress In Electromagnetics Research, Vol. 137, 187-202, 2013.
doi:10.2528/PIER13010407
References

1. Jin, J.-M., The Finite Element Method in Electromagnetics, 2nd Edition, Wiley-IEEE Press, 2002.
doi:10.1109/8.1074

2. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., Vol. 71, No. 7, 811-818, 1981.
doi:10.1364/JOSA.71.000811

3. Fotyga, G., K. Nyka, and M. Mrozowski, "Efficient model order reduction for FEM analysis of waveguide structures and resonators," Progress In Electromagnetics Research, Vol. 127, 277-295, 2012.
doi:10.2528/PIER12021609

4. Klopf, E. M., S. B. Manic, M. M. Ilic, and B. M. Notaros, "Efficient time-domain analysis of waveguide discontinuities using higher order FEM in frequency domain," Progress In Electromagnetics Research, Vol. 120, 215-234, 2011.

5. Guo, X.-M., Q.-X. Guo, W. Zhao, and W. Yu, "Parallel FDTD simulation using NUMA acceleration technique," Progress In Electromagnetics Research Letters, Vol. 28, 1-8, 2012.
doi:10.2528/PIERL11101706

6. Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge University Press, Cambridge, 1999.

7. Rau, U., D. Abou-Ras, and T. Kirchartz, Advanced Characteriation Techniques for Thin Film Solar Cells, Wiley, Weinheim, 2011.

8. Krc, J., M. Zeman, O. Kluth, F. Smole, and M. Topic, "Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells," Thin Solid Films, Vol. 426, No. 1-2, 296-304, 2003.
doi:10.1016/S0040-6090(03)00006-3

9. Solntsev, S. and M. Zeman, "Optical modeling of thin-film silicon solar cells with submicron periodic gratings and nonconformal layers," Energy Procedia, Vol. 10, No. 0, 308-312, 2011.
doi:10.1016/j.egypro.2011.10.196

10. Campa, A., J. Krc, and M. Topic, "Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations," Journal of Applied Physics, Vol. 105, No. 8, 083107, 2009.
doi:10.1063/1.3115408

11. Isabella, O., A. Campa, M. Heijna, W. J. Soppe, A. J. M. van Erven, R. H. Franken, H. Borg, and M. Zeman, "Diffraction gratings for light trapping in thin-film silicon solar cells," 23rd European Photovoltaic Solar Energy Conference and Exhibition, 2320-2324, Valencia, Spain, 2008.

12. Haase, C. and H. Stiebig, "Optical properties of thin-film silicon solar cells with grating couplers," Progress in Photovoltaics: Research and Applications, Vol. 14, No. 7, 629-641, 2006.
doi:10.1002/pip.694

13. Lipovsek, B., M. Cvek, A. Campa, J. Krc, and M. Topic, "Analysis and optimisation of periodic interface textures in thin-film silicon solar cells," 25th European Photovoltaic Solar Energy Conference and Exhibition, 3120-3123, Valencia, Spain, 2010.

14. Dewan, R., I. Vasilev, V. Jovanov, and D. Knipp, "Optical enhancement and losses of pyramid textured thin-film silicon solar cells," Journal of Applied Physics, Vol. 110, No. 1, 013101-013101-10, Jul. 2011.
doi:10.1063/1.3602092

15. Jandl, C., K. Hertel, C. Pflaum, and H. Stiebig, "Simulation of silicon thin-film solar cells for oblique incident waves," 25th European Photovoltaic Solar Energy Conference and Exhibition, 806505, Valencia, Spain, 2011.

16. Choi, W. J., Q.-H. Park, D. Kim, H. Jeon, C. Sone, and Y. Park, "FDTD simulation for light extraction in a GaN-based led," Journal of the Korean Physical Society, Vol. 49, No. 3, 877-880, 2006.

17. Capoglu, I. R., C. A. White, J. D. Rogers, H. Subramanian, A. Ta°ove, and V. Backman, "Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method," Optic Letters, Vol. 36, No. 9, 1596-1598, 2011.
doi:10.1364/OL.36.001596

18. Stiebig, H., "Entwicklung und beschreibung von optoelektronischen bauelementen auf der basis amorphen siliziums,", Ph.D. Thsis, Berichte des Forschungszentrums Julich, Julich, 1.
doi:10.1364/OL.36.001596

19. Krc, J., "Analysis and modelling of thin-film optoelectronic structures based on amorphous silicon,", Ph.D. Thesis, University of Ljubljana, Ljubljana, 2003.
doi:10.1364/OL.36.001596

20. Martin-Palma, R. J., J. M. Martinez-Duart, and A. Macleod, "Determination of the optical constants of a semiconductor thin film employing the matrix method," IEEE Transactions on Education, Vol. 43, No. 1, 63-68, 2000.
doi:10.1109/13.825742

21. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Artech Print on Demand, 1987.

22. Bennett, H. E. and J. O. Porteus, "Relation between surface roughness and specular reflectance at normal incidence," J. Opt. Soc. Am., Vol. 51, No. 2, 123-129, 1961.
doi:10.1364/JOSA.51.000123

23. Porteus, J. O., "Relation between the height distribution of a rough surface and the reflectance at normal incidence," Journal of the Optical Society of America, Vol. 53, No. 12, 1394, 1963.
doi:10.1364/JOSA.53.001394

24. Carniglia, C. K., "Scalar scattering theory for multilayer optical coatings," Optical Engineering, Vol. 18, 104-115, 1979.

25. Krc, J., F. Smole, and M. Topic, "Analysis of light scattering in amorphous Si:H solar cells by a one-dimensional semi-coherent optical model," Progress in Photovoltaics: Research and Applications, Vol. 11, No. 1, 15-26, 2003.
doi:10.1002/pip.460

26. Springer, J., A. Poruba, and M. Vanecek, "Improved three-dimensional optical model for thin-film silicon solar cells," Journal of Applied Physics, Vol. 96, No. 9, 5329, 2004.
doi:10.1063/1.1784555

27. , , , Multiphysics Modeling and Simulation Software, Available: http://www.comsol.com/.
doi:10.1002/(SICI)1098-2760(19980820)18:6<423::AID-MOP16>3.0.CO;2-#

28. Warren, G. S. and W. R. Scott, "Numerical dispersion in the finite-element method using three-dimensional edge elements," Microwave and Optical Technology Letters, Vol. 18, No. 6, 423-429, 1998.