Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-14
A Novel, High-Speed Image Transmitter for Wireless Capsule Endoscopy
By
Progress In Electromagnetics Research, Vol. 137, 129-147, 2013
Abstract
Wireless capsule endoscopy (WCE) was developed as a painless diagnostic tool for endoscopic examination of the gastrointestinal (GI) tract, but, to date, the low operating power of the capsule and the high data rate of the RF telemetry system are still key concerns. Innovative, novel solutions must be developed to address these concerns before WCE can be used extensively in clinical applications. In this paper, we propose a novel RF transmitter for WCE applications that only requires 1.5 V to transmit the required data as opposed to using a DC power supply. Our proposed, direct-conversion transmitter system consists of a current reuse oscillator, an envelope filter, and an L-section matching network. The oscillator is powered by the transmitting data which keep the oscillator in turned on and off for the transmitting 1 and 0 bit respectively and results in the on-off keying (OOK) of the modulated signal at the output of the oscillator. The rate of data transmission at the modulated signal is limited by the transient period of the oscillator start-up. When the start-up time of the oscillator is optimized, an OOK modulation rate of 100 Mb/s can be attained. In order to eliminate the oscillator decay noise, we used an envelope filter connected in series with the oscillator to filter out the decay part of the oscillation. Finally, the output impedance of the envelope filter is matched to the 50-Ω antenna with an L-section, low-pass, matching network to ensure maximum power transmission. The entire transmitter system was simulated in a 0.18-μm Complementary metal-oxide-semiconductor (CMOS) process.
Citation
Md. Rubel Basar, Mohd Fareq Bin Abd Malek, Mohd Iskandar Mohd Saleh, Mohd Shaharom Idris, Khairudi Mohd Juni, Azuwa Ali, Nur Adyani Mohd Affendi, and Nuriziani Hussin, "A Novel, High-Speed Image Transmitter for Wireless Capsule Endoscopy," Progress In Electromagnetics Research, Vol. 137, 129-147, 2013.
doi:10.2528/PIER13011102
References

1. Iddan, G., G. Meron, A. Glukhovsky, and P. Swain, "Wireless capsule endoscopy," Nature, Vol. 405, 417, May 2000.
doi:10.1038/35013140

2. Pan, G. and L. Wang, "Swallowable wireless capsule endoscopy: Progress and technical challenges," Gastroenterology Research and Practice, Vol. 2012, 1-9, 2011.
doi:10.1155/2012/841691

3. Ciuti, G., A. Menciassi, and P. Dario, "Capsule endoscopy: From current achievements to open challenges," IEEE Reviews in Biomedical Engineering, Vol. 4, 59-72, 2011.
doi:10.1109/RBME.2011.2171182

4. Chi, B., J. Yao, S. Han, X. Xie, G. Li, and Z. Wang, "Low power high data rate wireless endoscopy transceiver," Microelectronics Journal, Vol. 38, 1070-1081, 2007.
doi:10.1016/j.mejo.2007.07.118

5. Chi, B., J. Yao, S. Han, X. Xie, G. Li, and Z. Wang, "Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications," IEEE Transactions on Biomedical Engineering, Vol. 54, 1291-1299, 2007.
doi:10.1109/TBME.2006.889768

6. Diao, S., Y. Zheng, and C. Heng, "A CMOS ultra low-power and highly efficient UWB-IR transmitter for WPAN applications," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 56, 200-204, 2009.
doi:10.1109/TCSII.2009.2015369

7. Gao, Y., Y. Zheng, S. Diao, W. Toh, C. Ang, M. Je, and C. Heng, "Low-power ultrawideband wireless telemetry transceiver for medical sensor applications," IEEE Transactions on Biomedical Engineering, Vol. 58, 768-772, 2011.
doi:10.1109/TBME.2011.2164248

8. Shaban, H. A. and M. A. El-Nasr, "Performance comparison of ED, TR and DTR IR-UWB receivers for combined PAM-PPM modulation in realistic UWB channels," Progress In Electromagnetics Research Letters, Vol. 30, 91-103, 2012.
doi:10.2528/PIERL11120906

9. Wong, S.-K., F. Kung, S. Maisurah, and M. N. B. Osman, "A WiMedia compliant CMOS RF power amplifier for ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011.

10. Basar, M. R., M. F. B. A. Malek, K. M. Juni, M. I. M. Saleh, M. S. Idris, L. Mohamed, N. Saudin, N. A. Mohd Affendi, and A. Ali, "The use of a human body model to determine the variation of path losses in the human body channel in wireless capsule endoscopy," Progress In Electromagnetics Research, Vol. 133, 495-513, 2013.

11. Theilmann, P., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.

12. Szczepkowski, G., J. Dooley, and R. Farrell, "The concept of CMOS OOK transmitter using low voltage self-oscillating active inductor," International Conference on Signals and Electronics Systems, 213-216, 2010.

13. Diao, S., Y. Zheng, Y. Gao, C. Heng, and M. Je, "A 7.2-mW, 15-Mbps ASK CMOS transmitter for ingestible capsule endoscopy," IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 512-515, Dec. 6-9, 2010.

14. Kim, K., S. Yun, S. Lee, S. Nam, Y. Yoon, and C. Cheon, "A design of a high-speed and high-efficiency capsule endoscopy system," IEEE Transactions on Biomedical Engineering, Vol. 59, 1005-1010, Apr. 2012.
doi:10.1109/TBME.2011.2182050

15. Anang, K. A., P. B. Rapajic, R. Wu, L. Bello, and T. I. Eneh, "Cellular system information capacity change at higher frequencies due to propagation loss and system parameters," Progress In Electromagnetics Research B, Vol. 44, 191-221, 2012.

16. Anang, K. A., P. B. Rapajic, L. Bello, and R. Wu, "Sensitivity of cellular wireless network performance to system & propagation parameters at carrier frequencies greater than 2 GHz," Progress In Electromagnetics Research B, Vol. 40, 31-54, 2012.

17. Van Laethem, B., F. Quitin, F. Bellens, C. Oestges, and P. De Doncker, "Correlation for multi-frequency propagation in urban environments," Progress In Electromagnetics Research Letters, Vol. 29, 151-156, 2012.
doi:10.2528/PIERL11111701

18. Ibrani, M., L. Ahma, E. Hamiti, and J. Haxhibeqiri, "Derivation of electromagnetic properties of child biological tissues at radio frequencies," Progress In Electromagnetics Research Letters, Vol. 25, 87-100, 2011.

19. Chen, Z. and Y.-P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011.

20. Theilmann, P., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.

21. Izdebski, P. M., H. Rajagopalan, and Y. Rahmat-Samii, "Conformal ingestible capsule antenna: A novel chandelier meandered design," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 900-909, Apr. 2009.
doi:10.1109/TAP.2009.2014598

22. Kwak, K. S., S. Ullah, and N. Ullah, "An overview of IEEE 802.15.6 standard," 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), 1-6, Nov. 7-10, 2010.

23. Chirwa, L., C. P. A. Hammond, S. Roy, and D. R. S. Cumming, "Electromagnetic radiation from ingested sources in the human intestine between 150MHz and 1.2 GHz," IEEE Transactions on Biomedical Engineering, Vol. 50, No. 4, 484-492, Apr. 2003.
doi:10.1109/TBME.2003.809474

24. Vidal, N., S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
doi:10.2528/PIER11120515

25. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100MHz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005

26. Vrbova, B. and J. Vrba, "Microwave thermotherapy in cancer treatment: Evaluation of homogeneity of SAR distribution," Progress In Electromagnetics Research, Vol. 129, 181-195, 2012.

27. Moglie, F., V. Mariani Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.2528/PIERB11022506

28. Aguirre, E., J. Arpon, L. Azpilicueta, S. De Miguel Bilbao, V. Ramos, and F. J. Falcone, "Evaluation of electromagnetic dosimetry of wireless systems in complex indoor scenarios with human body interaction," Progress In Electromagnetics Research B, Vol. 43, 189-209, 2012.

29. Ronald, S. H., M. F. B. A. Malek, S. H. Idris, E. M. Cheng, M. H. Mat, M. S. Zulkefli, and S. F. Binti Maharimi, "Designing asian-sized hand model for SAR determination at GSM900/1800: Simulation part," Progress In Electromagnetics Research, Vol. 129, 439-467, 2012.

30. Kwon, Y., S. Park, T. Park, K. Cho, and H. Lee, "An ultra low-power CMOS transceiver using various low-power techniques for LR-WPAN applications," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59, 324-336, Feb. 2012.

31. Basar, M. R., F. Malek, K. M. Juni, M. I. M. Saleh, and M. Shaharom Idris, "A low power 2.4-GHz current reuse VCO for low power miniaturized transceiver system," IEEE International Conference on Electronic Design, Systems and Applications, 215-218, 2012.

32. Rogers, J. W. M. and C. Plett, Radio Frequency Integrated Circuit Design, 2nd Edition, Artech House, Boston, London, 2010.

33. Fong, N., C. Plett, G. Tarr, J.-O. Plouchart, D. Liu, N. Zamdmer, and L. Wagner, "Phase noise improvement of deep submicron low voltage VCO," Proceedings of the 28th European Solid-State Circuits Conference, 811-814, Sep. 24-26, 2002.

34. Kim, J. H. and M. M. Green, "Fast startup of LC VCOs using circuit asymmetries," 20th European Conference on Circuit Theory and Design, 2011.

35. Diao, S., Y. Zheng, and C. Heng, "A CMOS ultra low-power and highly efficient UWB-IR transmitter for WPAN application," IEEE Trans. on Circuits and Systems - II, Vol. 56, 200-204, Mar. 2009.
doi:10.1109/TCSII.2009.2015369

36. Barras, D., F. Ellinger, H. Jackel, and W. Hirt, "Low-power ultra-wideband wavelets generator with fast start-up circuit," IEEE Trans. on Microwave Theory and Technique, Vol. 54, 2138-2145, May 2006.
doi:10.1109/TMTT.2006.873631

37. Barras, D., F. Ellinger, H. Jackel, and W. Hirt, "Low-power ultra-wideband wavelets generator with fast start-up circuit," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 2138-2145, May 2006.
doi:10.1109/TMTT.2006.873631

38. Diao, S., Y. Zheng, and C.-H. Heng, "A CMOS ultra low-power and highly efficient UWB-IR transmitter for WPAN applications," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 56, 200-204, Mar. 2009.

39. Everitt, W. L. and G. E. Anner, Communication Engineering, 3rd Edition, McGraw-Hill, New York, 1956.

40. Han, Y. and D. J. Perreault, "Analysis and design of high efficiency matching networks," IEEE Transactions on Power Electronics, Vol. 21, 1484-1491, Sep. 2006.
doi:10.1109/TPEL.2006.882083

41. Misra, D. K., Radio-frequency and Microwave Communication Circuits, John Wiley & Sons, Inc., 2004.