Vol. 140

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-05-27

Artificial Magnetic Materials Synthesis with Generic Metallic Broken Loops

By Ali Kabiri and Omar M. Ramahi
Progress In Electromagnetics Research, Vol. 140, 105-129, 2013
doi:10.2528/PIER13021503

Abstract

We propose a methodic approach to design Artificial Magnetic Materials (AMM) with desired magnetic properties. The design procedure is defined based on a novel formulation for characterizing AMMs. The employed formulation expresses the effective permeability and the magnetic loss tangent (MLT) in terms of the geometrical and physical parameters of the inclusions. The method comprised four steps. In the first step, the feasibility of the design is checked through a set of constraints. The second and third steps provide an iterative procedure to capture the desired magnetic properties. Finally, the geometrical elements, i.e., the area and perimeter of inclusions, are calculated. The technique is applied to design of an AMM structure based on Rose curve resonators. The design based on the proposed methodology is verified by the numerical simulation of the AMM.

Citation


Ali Kabiri and Omar M. Ramahi, "Artificial Magnetic Materials Synthesis with Generic Metallic Broken Loops," Progress In Electromagnetics Research, Vol. 140, 105-129, 2013.
doi:10.2528/PIER13021503
http://www.jpier.org/PIER/pier.php?paper=13021503

References


    1. Penury, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, November 1999.

    2. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bian-isotropy in negative permeability and left-handed metamaterials," Physical Review B, Vol. 65, No. 14, 144440, April 2002.
    doi:10.1103/PhysRevB.65.144440

    3. Maslovski, S., P. Ikonen, I. Kolmakov, and S. Tretyakov, "Arti¯cial magnetic materials based on the new magnetic particle: Metasolenoid," Progress In Electromagnetics Research, Vol. 54, 61-81, 2005.
    doi:10.2528/PIER04101101

    4. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Physical Review B, Vol. 69, No. 1, 141-145, January 2004.
    doi:10.1103/PhysRevB.69.014402

    5. Boybay, M. and O. M. Ramahi, "Near-field probes using double and single negative media," Physical Review E, Vol. 79, No. 1, 016602-016611, January 2009.
    doi:10.1103/PhysRevE.79.016602

    6. Ikonen, P. M. T., K. N. Rozanov, A. V. Osipov, P. Alitalo, and S. A. Tretyakov, "Magnetodielectric substrates in antenna miniaturization: Potential and limitations," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 391-3399, November 2006.

    7. Pendry, J., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    8. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207-402, May 2008.
    doi:10.1103/PhysRevLett.100.207402

    9. Lahiri, B., A. Z. Khokhar, R. M. Delarue, S. G. McMeekin, and N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials," Optics Express, Vol. 4, No. 3, 1107-1115, January 2009.
    doi:10.1364/OE.17.001107

    10. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging," Journal of Optical Society America B, Vol. 23, No. 3, 391-403, March 2006.
    doi:10.1364/JOSAB.23.000391

    11. Kabiri, A., L. Yousefi, and O. M. Ramahi, "On the fundamental limitations of artificial magnetic materials," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2345-2353, July 2010.
    doi:10.1109/TAP.2010.2048845

    12. Sauviac, B., C. R. Siovski, and S. A. Tretyakov, "Double split-ring resonators: Analytical modeling and numerical simulation," Electromagnetics, Vol. 24, No. 5, 317-338, February 2004.
    doi:10.1080/02726340490457890

    13. Shamonin, M., E. Shamonina, V. Kalinin, and L. Solymar, "Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring," Journal of Applied Physics, Vol. 95, No. 57, 3778-3784, April 2004.

    14. Ikonen, P. and S. A. Tretyakov, "Determination of generalized permeability function and field energy density in artificial magnetics using the equivalent-circuit method," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 1, 92-99, January 2007.
    doi:10.1109/TMTT.2006.886914

    15. Baena, J. D., L. Jelinek, R. Marques, and M. Silveirinha, "Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials ," Physical Review A, Vol. 78, 013842(1)-013842(1), July 2008.

    16. Markos, P. and C. Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators," Physical Review E, Vol. 65, No. 3, 36622-36623, March 2002.
    doi:10.1103/PhysRevE.65.036622

    17. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Transactions on Antennas and Propagation, Vol. 51, 2572-2581, October 2003.

    18. Baena, J. D., L. Jelinek, and R. Marqus, "Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry," Physical Review B, Vol. 76, 24515(1)-24515(14), December 2007.

    19. Gay-Balmaz, P. and O. J. F. Martin, "Efficient isotropic magnetic resonators," Applied Physics Letters, Vol. 81, No. 5, 939-941, 2001.
    doi:10.1063/1.1496507

    20. Landau, L. D., L. P. Pitaevskii, and E. Lifshitz, Electrodynamics of Continuous Media, 2nd Ed., Pergamon Press, 2004.

    21. Cummer, S. A., B.-I. Popa, and T. H. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, January 2008.
    doi:10.1109/TAP.2007.912959

    22. Forray, M. J., Variational Calculus in Science and Engineering, McGraw Hill, 1968.

    23. Kabiri, A. and O. M. Ramahi, "nth order rose curve as a generic candidate for RF artificial magnetic material," Applied Physics Letters, Vol. 103, 831-834, January 2011.