Vol. 140

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-05-22

The Accurate Fourth-Order Doppler Parameter Calculation and Analysis for Geosynchronous SAR

By Bingji Zhao, Xiangyang Qi, Hongjun Song, Wenjun Gao, Xiaolei Han, and Run Pu Chen
Progress In Electromagnetics Research, Vol. 140, 91-104, 2013
doi:10.2528/PIER13031315

Abstract

This paper presents a new approach to calculate the accurate fourth-order Doppler parameters for Geosynchronous Synthetic Aperture Radar (Geo-SAR). To get exact calculation results, the Earth is modeled as an ellipsoid and the relative motion between the sensor in an elliptical orbit and the rotating Earth is analyzed. The J2, J3 and J4 orbital perturbation items and attitude steering are analyzed. Ignoring the perturbation force would produce errors of the Doppler parameters for spaceborne SAR because it can influence the six orbital elements. Since the Doppler parameters are related to the antenna beam pointing directions and influenced by attitude of SAR platform, the calculation results before and after attitude steering are shown. Furthermore, the Doppler parameter properties during the whole orbital periods of Geo-SAR are compared with those of Low-Earth-Orbital SAR (Leo-SAR). Finally, the effects on Doppler parameters stemmed from the radar beam pointing accuracy are analyzed.

Citation


Bingji Zhao, Xiangyang Qi, Hongjun Song, Wenjun Gao, Xiaolei Han, and Run Pu Chen, "The Accurate Fourth-Order Doppler Parameter Calculation and Analysis for Geosynchronous SAR," Progress In Electromagnetics Research, Vol. 140, 91-104, 2013.
doi:10.2528/PIER13031315
http://www.jpier.org/PIER/pier.php?paper=13031315

References


    1. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, 113-168, Boston, Artech House, 2005.

    2. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

    3. Liu, Q., W. Hong, W. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
    doi:10.2528/PIER11060503

    4. Tomiyasu, K., Synthetic aperture radar in geosynchronous orbit, Proc. Antennas and Propagation Society International Symposium, USA, May 1978.

    5. Tomiyasu, K. and J. L. Pacell, "Synthetic aperture radar imaging from an inclined geosynchronous orbit," IEEE Trans. Geosci. Remote Sens., Vol. 21, No. 3, 324-328, 1983.
    doi:10.1109/TGRS.1983.350561

    6. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

    7. Xu, W., P. Huang, and Y.-K. Deng, "Muti-channel SPCMB-TOPS SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

    8. Tan, W., W. Hong, Y. Wang, and Y. Wu, "A novel spherical-wave three-dimensional imaging algorithm for microwave cylindrical scanning geometries," Progress In Electromagnetics Research, Vol. 111, 43-70, 2011.
    doi:10.2528/PIER10100307

    9. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
    doi:10.2528/PIER11071501

    10. Li, F. K., D. N. Held, J. C. Curlander, and C. L. Wu, "Doppler parameter estimation for spaceborne synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 23, No. 1, 47-56, 1985.
    doi:10.1109/TGRS.1985.289499

    11. Raney, R. K., "Doppler properties of radars in circular orbits," Int. J. Remote Sens., Vol. 7, No. 9, 1153-1162, 1986.
    doi:10.1080/01431168608948916

    12. Raney, R. K., "A comment on Doppler FM rate," Int. J. Remote Sens., Vol. 8, No. 7, 1091-1092, 1987.
    doi:10.1080/01431168708954755

    13. Eldhuset, K., "A new fourth-order processing algorithm for spaceborne SAR," IEEE Trans. Aero. Electronic Sys., Vol. 34, No. 3, 824-835, 1998.
    doi:10.1109/7.705890

    14. Fielder, H., E. Boerner, J. Mittermayer, and G. Krieger, "Total zero Doppler steering: A new method for minimizing the Doppler centroid," IEEE Geosci. Remote Sens. Lett., Vol. 2, No. 2, 141-145, 2005.
    doi:10.1109/LGRS.2005.844591

    15. Kozai, Y., "The motion of a close earth satellite," Astron. Journal, Vol. 64, No. 9, 367-377, 1959.
    doi:10.1086/107957

    16. Ze, Y., Z. Qing, C. Jie, and L. Sheng, A new satellite attitude steering approach for zero Doppler centroid, Proc. IET International Radar Conference, Guilin, China, 2009.